当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Algorithmic Complexity of Isolate Secure Domination in Graphs
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-12 , DOI: arxiv-2002.05538
Jakkepalli Pavan Kumar; P. Venkata Subba Reddy

A dominating set $S$ is an Isolate Dominating Set (IDS) if the induced subgraph $G[S]$ has at least one isolated vertex. In this paper, we initiate the study of new domination parameter called, isolate secure domination. An isolate dominating set $S\subseteq V$ is an isolate secure dominating set (ISDS), if for each vertex $u \in V \setminus S$, there exists a neighboring vertex $v$ of $u$ in $S$ such that $(S \setminus \{v\}) \cup \{u\}$ is an IDS of $G$. The minimum cardinality of an ISDS of $G$ is called as an isolate secure domination number, and is denoted by $\gamma_{0s}(G)$. Given a graph $ G=(V,E)$ and a positive integer $ k,$ the ISDM problem is to check whether $ G $ has an isolate secure dominating set of size at most $ k.$ We prove that ISDM is NP-complete even when restricted to bipartite graphs and split graphs. We also show that ISDM can be solved in linear time for graphs of bounded tree-width.
更新日期:2020-02-14

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug