当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Graph multicoloring reduction methods and application to McDiarmid-Reed's Conjecture
arXiv - CS - Discrete Mathematics Pub Date : 2018-12-05 , DOI: arxiv-1812.01911
Jean-Christophe Godin; Olivier Togni

A $(a,b)$-coloring of a graph $G$ associates to each vertex a set of $b$ colors from a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoints. We define general reduction tools for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, we prove necessary and sufficient conditions for the existence of a $(a,b)$-coloring of a path with prescribed color-sets on its end-vertices. Other more complex $(a,b)$-colorability reductions are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice. Computations on millions of such graphs generated randomly show that our tools allow to find (in linear time) a $(9,4)$-coloring for each of them. Although there remain few graphs for which our tools are not sufficient for finding a $(9,4)$-coloring, we believe that pursuing our method can lead to a solution of the conjecture of McDiarmid-Reed.
更新日期:2020-02-14

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug