当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emergent electric field control of phase transformation in oxide superlattices.
Nature Communications ( IF 14.7 ) Pub Date : 2020-02-14 , DOI: 10.1038/s41467-020-14631-3
Di Yi 1 , Yujia Wang 2 , Olaf M J van ʼt Erve 3 , Liubin Xu 4 , Hongtao Yuan 5 , Michael J Veit 1, 6 , Purnima P Balakrishnan 1, 7 , Yongseong Choi 8 , Alpha T N'Diaye 9 , Padraic Shafer 9 , Elke Arenholz 9, 10 , Alexander Grutter 11 , Haixuan Xu 4 , Pu Yu 2, 12, 13 , Berend T Jonker 3 , Yuri Suzuki 1, 6
Affiliation  

Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality.

中文翻译:


氧化物超晶格中相变的新兴电场控制。



电场可以改变材料的结构和性能,从而实现从电池到自旋电子学的各种应用。最近,电解门控可以产生大电场和电压驱动的离子转移,已被认为是实现电场控制相变的有力手段。过渡金属氧化物类别提供了许多潜在的候选物,它们在电解选通下表现出强烈的响应。然而,很少有材料在室温下表现出可逆的结构转变。在这里,我们报告了一种数字合成的过渡金属氧化物的实现,该氧化物在室温下显示出不同晶相之间的可逆、电场控制的转变。在由 SrIrO3 和 La0.2Sr0.8MnO3 交替单晶胞组成的超晶格中,我们发现可逆相变,晶格变化为 7%,化学、电子、磁性和光学性质发生显着调制,这是由可逆转移介导的氧和氢离子。引人注目的是,这种相变在构成氧化物、固溶体和较大周期超晶格中不存在。我们的研究结果为此类材料开辟了电压控制功能。
更新日期:2020-02-14
down
wechat
bug