当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Printing for Electrochemical Energy Applications.
Chemical Reviews ( IF 51.4 ) Pub Date : 2020-02-12 , DOI: 10.1021/acs.chemrev.9b00783
Michelle P Browne,Edurne Redondo,Martin Pumera

Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.

中文翻译:

用于电化学能源应用的3D打印。

增材制造(也称为三维(3D)打印)已在电化学的许多领域中广泛使用,以生产电极和设备,因为该技术允许快速制作原型且成本相对较低。此外,还有多种3D打印技术可用,包括熔融沉积建模(FDM),喷墨打印,选择激光熔化(SLM)和立体光刻(SLA),这使增材制造成为电化学目的非常理想的技术。特别地,在过去的几年中,已经出现了大量关于使用3D打印来创建用于电化学能量转换和存储的电极/设备的研究。在这方面已经取得了长足的进步。然而,为了对电化学能量转换和存储进行3D打印的有源且稳定的电极/设备,要与现有技术相抗衡,仍然需要克服许多挑战和缺点。在本综述中,我们将概述在这些电化学应用中使用3D打印的背后原因。然后,我们将讨论各种3D打印技术以及后修饰技术对3D打印电极的操作如何影响电极/设备的电化学性能。最后,我们将根据本综述的讨论,对这个令人兴奋的领域的未来观点提供见解。我们将概述在这些电化学应用中使用3D打印的背后原因。然后,我们将讨论各种3D打印技术以及后修饰技术对3D打印电极的操作如何影响电极/设备的电化学性能。最后,我们将根据本综述的讨论,对这个令人兴奋的领域的未来观点提供见解。我们将概述在这些电化学应用中使用3D打印的背后原因。然后,我们将讨论各种3D打印技术以及后修饰技术对3D打印电极的操作如何影响电极/设备的电化学性能。最后,我们将根据本综述的讨论,对这个令人兴奋的领域的未来观点提供见解。
更新日期:2020-02-13
down
wechat
bug