当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO
Science ( IF 44.7 ) Pub Date : 2020-02-13 , DOI: 10.1126/science.aav2412
Youngdong Song 1 , Ercan Ozdemir 2, 3 , Sreerangappa Ramesh 2 , Aldiar Adishev 2 , Saravanan Subramanian 2 , Aadesh Harale 4 , Mohammed Albuali 4 , Bandar Abdullah Fadhel 4, 5 , Aqil Jamal 4, 5 , Dohyun Moon 6 , Sun Hee Choi 6 , Cafer T Yavuz 1, 2, 5, 7
Affiliation  

Overcoming surface defects Dry reforming of methane with carbon dioxide creates a mixture of hydrogen and carbon monoxide—synthesis gas—which can be converted into liquid fuels. However, heterogeneous catalysts for this reaction are prone to deactivation through unwanted carbon deposition (coking) and loss of surface area of adsorbed metal nanoparticles through agglomeration (sintering). Y. Song et al. used highly crystalline fumed magnesium oxide to support molybdenumdoped nickel nanoparticle catalysts (see the Perspective by Chen and Xu). On heating, the nanoparticles migrated on the oxide surface to step edges to form larger, highly stable nanoparticles. This process also passivated sites for coking on the oxide to produce a catalyst with high activity and longevity at 800°C. Science, this issue p. 777; see also p. 737 Attachment of nickel nanocatalysts to step edges of fumed magnesium oxide suppressed deactivation by coking and sintering. Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the “Nanocatalysts On Single Crystal Edges” technique could lead to stable catalyst designs for many challenging reactions.

中文翻译:

稳定的 Ni-Mo 纳米催化剂在单晶 MgO 上干法重整甲烷

克服表面缺陷 甲烷与二氧化碳的干重整产生氢气和一氧化碳的混合物——合成气——可转化为液体燃料。然而,用于该反应的非均相催化剂易于通过不需要的碳沉积(焦化)和通过附聚(烧结)吸附的金属纳米颗粒的表面积损失而失活。Y. Song 等人。使用高度结晶的气相氧化镁来支持钼掺杂的镍纳米颗粒催化剂(参见 Chen 和 Xu 的观点)。加热时,纳米颗粒在氧化物表面迁移到阶梯边缘,形成更大、高度稳定的纳米颗粒。该过程还钝化了氧化物上的结焦位点,以生产在 800°C 下具有高活性和寿命的催化剂。科学,这个问题 p。777; 另见第 737 将镍纳米催化剂附着在气相法氧化镁的台阶边缘,抑制了焦化和烧结造成的失活。大规模的碳固定需要从二氧化碳中大量生产化学品。如果开发出耐焦炭和耐烧结催化剂,甲烷干法重整可以提供一条经济可行的途径。在这里,我们报告了一种钼掺杂的镍纳米催化剂,该催化剂稳定在单晶氧化镁 (MgO) 载体的边缘,并展示了甲烷干重整合成气的定量生产。该催化剂在每小时每单位质量催化剂 60 升的反应气体流量下连续运行超过 850 小时,没有可检测到的结焦。同步加速器研究还表明没有烧结,并表明在活化过程中,2。9 纳米作为合成微晶移动,在高于塔曼温度的 MgO 晶体边缘结合成稳定的 17 纳米晶粒。我们的发现为碳回收提供了一条在工业和经济上可行的途径,而“单晶边缘纳米催化剂”技术可以为许多具有挑战性的反应提供稳定的催化剂设计。
更新日期:2020-02-13
down
wechat
bug