当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid Electrolyte
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-02-12 , DOI: 10.1002/aenm.201903993
Sewon Kim 1, 2 , Changhoon Jung 3 , Hyunseok Kim 2 , Karen E. Thomas‐Alyea 4 , Gabin Yoon 1, 2 , Byunghoon Kim 1 , Michael E. Badding 5 , Zhen Song 5 , JaeMyung Chang 5 , Jusik Kim 2 , Dongmin Im 2 , Kisuk Kang 1, 6, 7
Affiliation  

Securing the chemical and physical stabilities of electrode/solid‐electrolyte interfaces is crucial for the use of solid electrolytes in all‐solid‐state batteries. Directly probing these interfaces during electrochemical reactions would significantly enrich the mechanistic understanding and inspire potential solutions for their regulation. Herein, the electrochemistry of the lithium/Li7La3Zr2O12‐electrolyte interface is elucidated by probing lithium deposition through the electrolyte in an anode‐free solid‐state battery in real time. Lithium plating is strongly affected by the geometry of the garnet‐type Li7La3Zr2O12 (LLZO) surface, where nonuniform/filamentary growth is triggered particularly at morphological defects. More importantly, lithium‐growth behavior significantly changes when the LLZO surface is modified with an artificial interlayer to produce regulated lithium depositions. It is shown that lithium‐growth kinetics critically depend on the nature of the interlayer species, leading to distinct lithium‐deposition morphologies. Subsequently, the dynamic role of the interlayer in battery operation is discussed as a buffer and seed layer for lithium redistribution and precipitation, respectively, in tailoring lithium deposition. These findings broaden the understanding of the electrochemical lithium‐plating process at the solid‐electrolyte/lithium interface, highlight the importance of exploring various interlayers as a new avenue for regulating the lithium‐metal anode, and also offer insight into the nature of lithium growth in anode‐free solid‐state batteries.

中文翻译:

石榴石型固体电解质在锂金属生长中的层间化学作用

确保电极/固体电解质界面的化学和物理稳定性对于在全固态电池中使用固体电解质至关重要。在电化学反应过程中直接探测这些界面将极大地丰富对机理的理解,并为调节它们提供潜在的解决方案。在此,通过实时探测无阳极固态电池中通过电解质的锂沉积,可以阐明锂/ Li 7 La 3 Zr 2 O 12电解质界面的电化学。石榴石型Li 7 La 3 Zr 2 O 12的几何形状极大地影响了镀锂(LLZO)表面,尤其是在形态缺陷时会触发不均匀/丝状生长。更重要的是,当用人造夹层修饰LLZO表面以产生可调节的锂沉积时,锂的生长行为会发生显着变化。结果表明,锂的生长动力学关键取决于中间层物种的性质,从而导致独特的锂沉积形态。随后,讨论了中间层在电池运行中的动态作用,分别作为缓冲层和种子层,用于锂的重新分配和沉淀,以适应锂的沉积。这些发现拓宽了对固体电解质/锂界面上电化学锂电镀工艺的理解,
更新日期:2020-03-27
down
wechat
bug