当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerating Atomic Catalyst Discovery by Theoretical Calculations‐Machine Learning Strategy
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2020-02-12 , DOI: 10.1002/aenm.201903949
Mingzi Sun 1 , Alan William Dougherty 1 , Bolong Huang 1 , Yuliang Li 2 , Chun‐Hua Yan 3
Affiliation  

Atomic catalysts (AC) are emerging as a highly attractive research topic, especially in sustainable energy fields. Lack of a full picture of the hydrogen evolution reaction (HER) impedes the future development of potential electrocatalysts. In this work, the systematic investigation of the HER process in graphdyine (GDY) based AC is presented in terms of the adsorption energies, adsorption trend, electronic structures, reaction pathway, and active sites. This comprehensive work innovatively reveals GDY based AC for HER covering all the transition metals (TM) and lanthanide (Ln) metals, enabling the screening of potential catalysts. The density functional theory (DFT) calculations carefully explore the HER performance beyond the comparison of sole H adsorption. Therefore, the screened catalysts candidates not only match with experimental results but also provide significant references for novel catalysts. Moreover, the machine learning (ML) technique bag‐tree approach is innovatively utilized based on the fuzzy model for data separation and converse prediction of the HER performance, which indicates a similar result to the theoretical calculations. From two independent theoretical perspectives (DFT and ML), this work proposes pivotal guidelines for experimental catalyst design and synthesis. The proposed advanced research strategy shows great potential as a general approach in other energy‐related areas.

中文翻译:

通过理论计算-机器学习策略加速原子催化剂的发现

原子催化剂(AC)正在成为一个有吸引力的研究课题,尤其是在可持续能源领域。氢放出反应(HER)的完整情况的缺乏阻碍了潜在的电催化剂的未来发展。在这项工作中,从吸附能,吸附趋势,电子结构,反应途径和活性位点等方面,对基于石墨烯(AC)的AC中的HER过程进行了系统研究。这项全面的工作创新地揭示了适用于HER的基于GDY的AC,涵盖了所有过渡金属(TM)和镧系元素(Ln)金属,从而可以筛选潜在的催化剂。密度泛函理论(DFT)计算仔细研究了HER性能,而不是比较唯一的H吸附。因此,筛选出的催化剂不仅与实验结果吻合,而且为新型催化剂提供了重要参考。此外,基于模糊模型的机器学习(ML)技术袋树方法被创新地用于数据分离和HER性能的逆向预测,这表明与理论计算结果相似。从两个独立的理论角度(DFT和ML),这项工作提出了实验催化剂设计和合成的关键指导原则。拟议的高级研究策略显示出在其他能源相关领域作为通用方法的巨大潜力。基于模糊模型的机器学习(ML)技术袋树方法被创新地用于数据分离和HER性能的逆向预测,这表明与理论计算结果相似。从两个独立的理论角度(DFT和ML),这项工作提出了实验催化剂设计和合成的关键指导原则。拟议的高级研究策略显示出在其他能源相关领域作为一般方法的巨大潜力。基于模糊模型的机器学习(ML)技术袋树方法被创新地用于数据分离和HER性能的逆向预测,这表明与理论计算结果相似。从两个独立的理论角度(DFT和ML),这项工作提出了实验催化剂设计和合成的关键指导原则。拟议的高级研究策略显示出在其他能源相关领域作为通用方法的巨大潜力。
更新日期:2020-03-27
down
wechat
bug