当前位置: X-MOL 学术Geobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The evolving redox chemistry and bioavailability of vanadium in deep time.
Geobiology ( IF 2.7 ) Pub Date : 2020-02-12 , DOI: 10.1111/gbi.12375
Eli K Moore 1 , Jihua Hao 2 , Stephanie J Spielman 3 , Nathan Yee 4, 5
Affiliation  

The incorporation of metal cofactors into protein active sites and/or active regions expanded the network of microbial metabolism during the Archean eon. The bioavailability of crucial metal cofactors is largely influenced by earth surface redox state, which impacted the timing of metabolic evolution. Vanadium (V) is a unique element in geo–bio‐coevolution due to its complex redox chemistry and specific biological functions. Thus, the extent of microbial V utilization potentially represents an important link between the geo‐ and biospheres in deep time. In this study, we used geochemical modeling and network analysis to investigate the availability and chemical speciation of V in the environment, and the emergence and changing chemistry of V‐containing minerals throughout earth history. The redox state of V shifted from a more reduced V(III) state in Archean aqueous geochemistry and mineralogy to more oxidized V(IV) and V(V) states in the Proterozoic and Phanerozoic. The weathering of vanadium sulfides, vanadium alkali metal minerals, and vanadium alkaline earth metal minerals were potential sources of V to the environment and microbial utilization. Community detection analysis of the expanding V mineral network indicates tectonic and redox influence on the distribution of V mineral‐forming elements. In reducing environments, energetic drivers existed for V to potentially be involved in early nitrogen fixation, while in oxidizing environments vanadate (urn:x-wiley:14724677:media:gbi12375:gbi12375-math-0001) could have acted as a metabolic electron acceptor and phosphate mimicking enzyme inhibitor. The coevolving chemical speciation and biological functions of V due to earth's changing surface redox conditions demonstrate the crucial links between the geosphere and biosphere in the evolution of metabolic electron transfer pathways and biogeochemical cycles from the Archean to Phanerozoic.

中文翻译:

钒在深度时间内不断发展的氧化还原化学和生物利用度。

将金属辅因子掺入蛋白质活性位点和/或活性区中可以扩展古细菌时代的微生物代谢网络。关键金属辅因子的生物利用度在很大程度上受地球表面氧化还原状态的影响,这影响了代谢进化的时机。钒(V)由于其复杂的氧化还原化学作用和特定的生物学功能,在地球生物演化中是独特的元素。因此,微生物V的利用程度潜在地代表了深层时期地球与生物圈之间的重要联系。在这项研究中,我们使用地球化学建模和网络分析来研究环境中V的可用性和化学形态,以及在整个地球历史中V矿物的出现和化学变化。V的氧化还原态从太古代的地球化学和矿物学中的还原的V(III)态转变为元古代和半生代中的氧化的V(IV)和V(V)态。硫化钒,钒碱金属矿物和钒碱土金属矿物的风化作用是环境和微生物利用的潜在V来源。对不断扩展的V矿物网络的社区检测分析表明,构造和氧化还原对V矿物形成元素的分布有影响。在还原性环境中,存在使V参与早期固氮的能量驱动力,而在氧化性环境中钒酸盐(钒碱金属矿物和钒碱土金属矿物是对环境和微生物利用的潜在V来源。对不断扩展的V矿物网络的社区检测分析表明,构造和氧化还原对V矿物形成元素的分布有影响。在还原性环境中,存在使V参与早期固氮的能量驱动力,而在氧化性环境中钒酸盐(钒碱金属矿物和钒碱土金属矿物是对环境和微生物利用的潜在V来源。对不断扩展的V矿物网络的社区检测分析表明,构造和氧化还原对V矿物形成元素的分布有影响。在还原性环境中,存在使V参与早期固氮的能量驱动力,而在氧化性环境中钒酸盐(骨灰盒:x-wiley:14724677:media:gbi12375:gbi12375-math-0001)可能充当了代谢电子受体和磷酸盐模拟酶抑制剂。由于地球不断变化的表面氧化还原条件,V的化学形态和生物学功能的共同演化表明,在古生代到生代代代谢电子转移途径和生物地球化学循环的演化过程中,地球圈和生物圈之间至关重要的联系。
更新日期:2020-02-12
down
wechat
bug