当前位置: X-MOL 学术Int. J. Mech. Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field
International Journal of Mechanics and Materials in Design ( IF 3.7 ) Pub Date : 2020-02-12 , DOI: 10.1007/s10999-020-09487-w
Ahad Amiri , Arian Masoumi , Roohollah Talebitooti

Fluid-conveying micro/Nano structures are key tools in MEMS and NEMS applications especially for drug delivery systems to attack a specific tumor like cancer cells. Vibrational characteristics of such tools play a crucial role in delivering efficient and reliable performance in various applications. As a result, vibration and instability control of such systems is of great importance. Vibration and instability response of magnetostrictive sandwich cantilever fluid-conveying micro-pipes is investigated in this paper utilizing smart magnetostrictive layers as actuators. Euler–Bernoulli beam model together with modified couple stress theory (MCST) are used to model the problem. As main properties of these smart layers, magnetic intensity effect, velocity feedback gain and thermal effects are taken into account in the modeling. The governing equation is extracted employing Hamilton’s principle. Extended Galerkin procedure is applied to discretize the governing equation and obtain the eigenvalue problem which is solved straightforwardly to reach the eigenvalues. Afterwards, eigenvalue diagrams are studied to analyze the vibrational characteristics and possible instabilities (flutter and bifurcation) occurring in first three modes of the system. Throughout this analysis, the role of various intrinsic properties of the magnetostrictive layers on the critical flow velocity and frequency is studied in detail. The numerical results show a good ability for the used smart layers to control the instability of fluid-conveying micro-pipes. Therefore, these sandwich structures may be helpful for achieving a novel design for such systems.



中文翻译:

在热和磁场作用下被磁致伸缩智能层夹在中间的输液微管的颤振和分叉不稳定性分析

流体输送的微/纳米结构是MEMS和NEMS应用中的关键工具,尤其是用于药物输送系统以攻击特定肿瘤(如癌细胞)的工具。这种工具的振动特性在各种应用中提供有效和可靠的性能方面起着至关重要的作用。结果,这种系统的振动和不稳定性控制非常重要。本文利用智能磁致伸缩层作为致动器,研究了磁致伸缩夹层悬臂流体输送微管的振动和失稳响应。欧拉-伯努利梁模型与改进的耦合应力理论(MCST)一起用于对问题进行建模。作为这些智能层的主要属性,在建模中考虑了磁强度效应,速度反馈增益和热效应。利用汉密尔顿原理提取控制方程。应用扩展的Galerkin程序离散控制方程并获得特征值问题,该问题可直接解决以求出特征值。然后,研究特征值图以分析系统的前三种模式中发生的振动特性和可能的​​不稳定性(颤动和分叉)。在整个分析过程中,详细研究了磁致伸缩层的各种固有特性对临界流速和频率的作用。数值结果表明,所使用的智能层具有良好的控制流体输送微管不稳定性的能力。因此,这些夹层结构可能有助于实现此类系统的新颖设计。应用扩展的Galerkin程序离散控制方程并获得特征值问题,该问题可直接解决以求出特征值。然后,研究特征值图以分析系统的前三种模式中发生的振动特性和可能的​​不稳定性(颤动和分叉)。在整个分析过程中,详细研究了磁致伸缩层的各种固有特性对临界流速和频率的作用。数值结果表明,所使用的智能层具有良好的控制流体输送微管不稳定性的能力。因此,这些夹层结构可能有助于实现此类系统的新颖设计。应用扩展的Galerkin程序离散控制方程并获得特征值问题,该问题可直接解决以求出特征值。然后,研究特征值图以分析系统的前三种模式中发生的振动特性和可能的​​不稳定性(颤动和分叉)。在整个分析过程中,详细研究了磁致伸缩层的各种固有特性对临界流速和频率的作用。数值结果表明,所使用的智能层具有良好的控制流体输送微管不稳定性的能力。因此,这些夹层结构可能有助于实现此类系统的新颖设计。

更新日期:2020-02-12
down
wechat
bug