当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling Effect of Prior Austenite Grain Size and Inclusion Characteristics on Acicular Ferrite Formation in Ti-Zr Deoxidized Low Carbon Steel
Metallurgical and Materials Transactions B ( IF 2.4 ) Pub Date : 2020-02-12 , DOI: 10.1007/s11663-020-01785-0
Yongkun Yang , Dongping Zhan , Hong Lei , Yulu Li , Guoxing Qiu , Rongjian Wang , Zhouhua Jiang , Huishu Zhang

The coupling effect of prior austenite grain size and inclusion characteristics on acicular ferrite (AF) formation was investigated in Ti-Zr deoxidized low carbon steel by utilizing the high temperature confocal laser scanning microscope (HT-CLSM), optical microscope (OM), and scanning electron microscope (SEM) equipped with energy-dispersive spectrometer (EDS). The results indicated that with the target heating temperature increased from 1100 °C to 1350 °C, the average size of prior austenite grain varied from 58.22 to 237.40 μ m, and the average grain size increased rapidly when the temperature was above 1200 °C. For inclusion characteristics, different target heating temperatures had no obvious effect on inclusion types, but had a great influence on the average size and number density of each, especially for the intragranular effective inclusions. In addition, as the increase of target heating temperature, the types of microstructure were identical, but both AF volume fraction and AF relative nucleation ability increased first and then decreased. When the target heating temperature of sample was 1250 °C, the AF volume fraction reached the maximum of 49.48 pct. However, the AF relative nucleation ability reached the maximum of 474.5 at the target heating temperature 1200 °C, at this time, the AF volume fraction was 47.92 pct, only 1.56 pct smaller than that at 1250 °C. Therefore, considering the AF volume fraction and AF relative nucleation ability, the optimal target heating temperature for AF formation in this study was 1200 °C, and the corresponding prior austenite grain size was 69.58 μ m.

中文翻译:

原奥氏体晶粒尺寸和夹杂物特征对Ti-Zr脱氧低碳钢针状铁素体形成的耦合影响

利用高温共聚焦激光扫描显微镜 (HT-CLSM)、光学显微镜 (OM) 和光学显微镜 (OM) 研究了 Ti-Zr 脱氧低碳钢中原奥氏体晶粒尺寸和夹杂物特征对针状铁素体 (AF) 形成的耦合作用。配备能谱仪 (EDS) 的扫描电子显微镜 (SEM)。结果表明,随着目标加热温度从1100℃升高到1350℃,原奥氏体晶粒的平均尺寸从58.22~237.40μm不等,当温度高于1200℃时,平均晶粒尺寸迅速增大。对于夹杂物特性,不同的目标加热温度对夹杂物的种类没有明显影响,但对夹杂物的平​​均尺寸和数量密度有很大影响,特别是对于晶内有效夹杂物。此外,随着目标加热温度的升高,显微组织类型相同,但AF体积分数和AF相对成核能力均先升高后降低。当样品的目标加热温度为1250°C时,AF体积分数达到了最大值49.48 pct。但在目标加热温度1200℃时AF相对成核能力达到最大值474.5,此时AF体积分数为47.92%,仅比1250℃时小1.56%。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。随着目标加热温度的升高,显微组织类型相同,但AF体积分数和AF相对成核能力均先升高后降低。当样品的目标加热温度为1250°C时,AF体积分数达到了最大值49.48 pct。但在目标加热温度1200℃时AF相对成核能力达到最大值474.5,此时AF体积分数为47.92%,仅比1250℃时小1.56%。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。随着目标加热温度的升高,显微组织类型相同,但AF体积分数和AF相对成核能力均先升高后降低。当样品的目标加热温度为1250°C时,AF体积分数达到了最大值49.48 pct。但在目标加热温度1200℃时AF相对成核能力达到最大值474.5,此时AF体积分数为47.92%,仅比1250℃时小1.56%。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。但AF体积分数和AF相对成核能力均先升高后降低。当样品的目标加热温度为1250°C时,AF体积分数达到了最大值49.48 pct。但在目标加热温度1200℃时AF相对成核能力达到最大值474.5,此时AF体积分数为47.92%,仅比1250℃时小1.56%。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。但AF体积分数和AF相对成核能力均先升高后降低。当样品的目标加热温度为1250°C时,AF体积分数达到了最大值49.48 pct。但在目标加热温度1200℃时AF相对成核能力达到最大值474.5,此时AF体积分数为47.92%,仅比1250℃时小1.56%。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。AF相对成核能力在目标加热温度1200°C时达到最大值474.5,此时AF体积分数为47.92 pct,仅比1250°C时小1.56 pct。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。AF相对成核能力在目标加热温度1200°C时达到最大值474.5,此时AF体积分数为47.92 pct,仅比1250°C时小1.56 pct。因此,考虑AF体积分数和AF相对成核能力,本研究中AF形成的最佳目标加热温度为1200℃,对应的原奥氏体晶粒尺寸为69.58μm。
更新日期:2020-02-12
down
wechat
bug