当前位置: X-MOL 学术Connect. Sci. › 论文详情
Fractional power series neural network for solving delay fractional optimal control problems
Connection Science ( IF 1.042 ) Pub Date : 2019-05-08 , DOI: 10.1080/09540091.2019.1605498
Farzaneh Kheyrinataj; Alireza Nazemi

In this paper, we develop a numerical method for solving the delay optimal control problems of fractional-order. The fractional derivatives are considered in the Caputo sense. The process begins with the assumption that the problem is first transformed into an equivalent problem with a fractional dynamical system without delay, using a Padé approximation. We then try to approximate the solution of the Hamiltonian conditions based on the Pontryagin minimum principle. The main feature is to implement nonlinear polynomial expansions in a neural network adaptive structure. The transfer functions of the employed neural network follow a fractional power series. The proposed technique does not use sigmoid or hyperbolic tangent nonlinear transfer functions commonly adopted in conventional neural networks at the output. Instead, linear transfer functions are employed which lead to explicit fractional power series formulae for the fractional optimal control problem. To do this, we use trial solutions for the states, Lagrange multipliers and control functions where these trial solutions are constructed by fractional power series neural network model. We then minimise the error function using an unconstrained optimisation scheme where weight parameters (or coefficients of the series) and biases associated with all neurons are unknown. Some numerical examples are given to illustrate the effectiveness of the proposed scheme.

更新日期:2020-04-20

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug