当前位置: X-MOL 学术Prog. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodiversity and distribution patterns of deep-sea fauna along the temperate NW Pacific
Progress in Oceanography ( IF 4.1 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.pocean.2020.102296
Hanieh Saeedi , Marianna Simões , Angelika Brandt

Abstract The deep NW Pacific has been intensively analyzed in the last decade, during an international collaboration between German and Russian scientists, which has resulted in a vast, unique collection of material from previously unexplored areas. Until now, the environmental forces that could be driving species richness patterns in the deep NW Pacific have not been explored widely. Therefore, in this paper, we utilize new species distribution data from four deep-sea expeditions to the NW Pacific (2010–2016), which include the Sea of Japan, Sea of Okhotsk, the abyssal plain adjacent to the Kuril-Kamchatka Trench (KKT) and the KKT, to better understand species connectivity, biodiversity patterns, and distribution ranges in deep-sea benthos in this region. To determine the best environmental predictors driving these deep-sea species richness patterns, we applied generalized additive (GAMs) and linear models (GLMs). We calculated the total number of geographic distribution records, alpha (total number of species per 10,000 km2 hexagonal cells) and gamma species richness (total number of species per 1° latitudinal bands), and expected number of species (rarefaction ES15). Our highest number of distribution records and gamma species richness during the last decade peaked at intermediate latitudes (42°−44°N) along the mesopelagic zone (500–1000 m) of the Sea of Japan and abyssopelagic zone (4000–6000 m) of the NW Pacific and KKT. When sampling bias was accounted for, the alpha species richness in bathypelagic zone (1000–4000 m) of Sea of Okhotsk and abyssopelagic zone (4000–6000 m) of the NW Pacific and KKT were as high as mesopelagic zone of the Sea of Japan. The similarity cluster analysis of species presence/absence in lower bathyal/hadal (3000–8500 m) revealed three distinct geographic regions including Sea of Japan, Sea of Okhotsk, and KKT in the NW Pacific. The eastern sector of the Sea of Okhotsk and western KKT had c. 50% of species in common. Several species of deep-sea Bivalves, such as Dacrydium rostriferum and Vesicomya pacifica, had the greatest latitudinal distribution ranges among all species. Echinoderm Ophiura leptoctenia , had instead, the broadest bathymetric distribution ranges compared to all other collected species. GAM models indicated that dissolved oxygen was the best explanatory variable for predicting numbers of species, closely followed by the model including all environmental variables plus topography. However, the GLM models of species richness, with latitudinal intervals of 1° and 5°, found that the topography and temperature were the best predictors of number of species. GLM model outputs indicated that a model that contains only the number of distribution records is, for all practical purposes, as good as any model that contains an environmental predictor. This study provides new insights on the NW Pacific deep-sea species richness patterns, where dissolved oxygen might play an important role, especially when considering the Oxygen Minimum Zones (OMZs) in the deep NW Pacific.

中文翻译:

温带西北太平洋深海动物的生物多样性和分布模式

摘要 在过去十年中,在德国和俄罗斯科学家之间的国际合作期间,人们对西北太平洋深部进行了深入分析,从而从以前未探索的地区收集了大量独特的材料。到目前为止,可能推动西北太平洋深部物种丰富度模式的环境力量尚未得到广泛探索。因此,在本文中,我们利用了来自四次西北太平洋深海探险(2010-2016)的新物种分布数据,其中包括日本海、鄂霍次克海、与千岛-堪察加海沟相邻的深海平原( KKT) 和 KKT,以更好地了解该地区深海底栖动物的物种连通性、生物多样性模式和分布范围。为了确定驱动这些深海物种丰富度模式的最佳环境预测因子,我们应用了广义加法 (GAM) 和线性模型 (GLM)。我们计算了地理分布记录的总数、alpha(每 10,000 平方公里六边形单元的物种总数)和 gamma 物种丰富度(每 1° 纬度带的物种总数)和预期物种数(稀有度 ES15)。在过去十年中,我们最高的分布记录和伽马物种丰富度在日本海中海带(500-1000 m)和深海带(4000-6000 m)的中纬度(42°-44°N)达到峰值西北太平洋和 KKT。当考虑到抽样偏差时,鄂霍次克海深海带(1000-4000 m)和西北太平洋和KKT深海带(4000-6000 m)的α物种丰富度与日本海中层带一样高。下半深海/哈达尔(3000-8500 m)物种存在/不存在的相似性聚类分析揭示了三个不同的地理区域,包括日本海、鄂霍次克海和西北太平洋的 KKT。鄂霍次克海东部和 KKT 西部有 c。50% 的物种有共同之处。几种深海双壳类动物,如 Dacrydium rostriferum 和 Vesicomya pacifica,在所有物种中具有最大的纬度分布范围。与所有其他收集的物种相比,棘皮动物 Ophiura leptoctenia 具有最广泛的测深分布范围。GAM 模型表明,溶解氧是预测物种数量的最佳解释变量,紧随其后的是包含所有环境变量和地形的模型。然而,纬度间隔为 1° 和 5° 的物种丰富度 GLM 模型发现,地形和温度是物种数量的最佳预测因子。GLM 模型输出表明,就所有实际目的而言,仅包含分布记录数量的模型与包含环境预测变量的任何模型一样好。这项研究提供了对西北太平洋深海物种丰富度模式的新见解,其中溶解氧可能发挥重要作用,尤其是在考虑西北太平洋深部的氧气最低区 (OMZ) 时。紧随其后的模型包括所有环境变量和地形。然而,纬度间隔为 1° 和 5° 的物种丰富度 GLM 模型发现,地形和温度是物种数量的最佳预测因子。GLM 模型输出表明,就所有实际目的而言,仅包含分布记录数量的模型与包含环境预测变量的任何模型一样好。这项研究提供了对西北太平洋深海物种丰富度模式的新见解,其中溶解氧可能发挥重要作用,尤其是在考虑西北太平洋深海的最低氧区 (OMZ) 时。紧随其后的模型包括所有环境变量和地形。然而,纬度间隔为 1° 和 5° 的物种丰富度 GLM 模型发现,地形和温度是物种数量的最佳预测因子。GLM 模型输出表明,就所有实际目的而言,仅包含分布记录数量的模型与包含环境预测变量的任何模型一样好。这项研究提供了对西北太平洋深海物种丰富度模式的新见解,其中溶解氧可能发挥重要作用,尤其是在考虑西北太平洋深海的最低氧区 (OMZ) 时。发现地形和温度是物种数量的最佳预测因子。GLM 模型输出表明,就所有实际目的而言,仅包含分布记录数量的模型与包含环境预测变量的任何模型一样好。这项研究提供了对西北太平洋深海物种丰富度模式的新见解,其中溶解氧可能发挥重要作用,尤其是在考虑西北太平洋深海的最低氧区 (OMZ) 时。发现地形和温度是物种数量的最佳预测因子。GLM 模型输出表明,就所有实际目的而言,仅包含分布记录数量的模型与包含环境预测变量的任何模型一样好。这项研究提供了对西北太平洋深海物种丰富度模式的新见解,其中溶解氧可能发挥重要作用,尤其是在考虑西北太平洋深部的氧气最低区 (OMZ) 时。
更新日期:2020-04-01
down
wechat
bug