当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Identification of VoIP Speech With Multiple Domain Deep Features
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2019-12-18 , DOI: 10.1109/tifs.2019.2960635
Yuankun Huang; Bin Li; Mauro Barni; Jiwu Huang

Identifying whether a phone call comes from VoIP (Voice over Internet Protocol) is a challenging but less-investigated audio forensic issue. As shown in a previous study, existing feature based methods do not work well. In this paper, we propose a robust data-driven approach, called CNN-MLS (convolutional neural network based multi-domain learning scheme), to distinguish VoIP calls from mobile phone calls. To better explore the differences between VoIP and mobile phone calls, we first process data with high-pass filtering, and then extract deep features from both temporal domain and spectral domain. Two CNN architectures are designed for accepting data from respective domains, and some tricks such as auxiliary classifiers and individual subnet training are used for accelerating network convergence. The deep features are finally fused in a classification module for identifying the phone call type. The proposed method is evaluated on VPCID (VoIP Phone Call Identification Database) dataset, under various testing conditions. We pay particular attention to tests on data belonging to a source mismatched with the training sources. Experimental results show that, compared with existing methods, our method can achieve satisfactory and better accuracy on two-second-long inputs, implying that an alert may be activated shortly after a VoIP call is made.
更新日期:2020-02-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug