当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Audio Steganography Based on Iterative Adversarial Attacks Against Convolutional Neural Networks
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2020-01-03 , DOI: 10.1109/tifs.2019.2963764
Junqi Wu; Bolin Chen; Weiqi Luo; Yanmei Fang

Recently, convolutional neural networks (CNNs) have demonstrated superior performance on digital multimedia steganalysis. However, some studies have noted that most CNN-based classifiers can be easily fooled by adversarial examples, which form slightly perturbed inputs to a target network according to the gradients. Inspired by this phenomenon, we first introduce a novel steganography method based on adversarial examples for digital audio in the time domain. Unlike related methods for image steganography, such as [1] – [4] , which are highly dependent on some existing embedding costs, the proposed method can start from a flat or even a random embedding cost and then iteratively update the initial costs by exploiting the adversarial attacks until satisfactory security performances are obtained. The extensive experimental results show that our method significantly outperforms the existing nonadaptive and adaptive steganography methods and achieves state-of-the-art results. Moreover, we also provide experimental results to investigate why the proposed embedding modifications seem evenly located at all audio segments despite their different content complexities, which is contrary to the content adaptive principle widely employed in modern steganography methods.
更新日期:2020-02-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug