当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Multi-Stage Feature Constraints Learning for Age Estimation
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2020-01-27 , DOI: 10.1109/tifs.2020.2969552
Min Xia; Xu Zhang; Wan’an Liu; Liguo Weng; Yiqing Xu

The biometric information contained in a face image is affected by many factors such as living environment, racial differences, and genetic diversity, this complexity leads to the nonstationary of the age estimation. In order to reduce the overlap of face features between adjacent ages and improve the accuracy of age prediction, a multi-stage feature constraints learning method is proposed for face age estimation. The proposed method gradually refines the feature through three feature constraint stages. In each stage, the algorithm continuously updates the feature center of its corresponding age range, and minimizes the distance between each age feature and feature center of the corresponding age range through feature constraint. Feature constraint makes the feature distances between different individuals in the same age feature space smaller and decrease the overlap areas between adjacent age range feature spaces. Meanwhile, the feature distance of different age range feature space is enlarged. The proposed network efficiently merges the features of three stages and optimizes the mapping of feature maps to an ordered binary comparison space. Experiments show that the proposed method is able to effectively improve the discrimination between different age features, and hence to improve the accuracy of face age estimation. In addition, the proposed algorithm is simple enough to achieve fast face age estimation.
更新日期:2020-02-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug