当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
DCAP: A Secure and Efficient Decentralized Conditional Anonymous Payment System Based on Blockchain
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2020-01-27 , DOI: 10.1109/tifs.2020.2969565
Chao Lin; Debiao He; Xinyi Huang; Muhammad Khurram Khan; Kim-Kwang Raymond Choo

Blockchain, a distributed ledger technology, can potentially be deployed in a wide range of applications. Among these applications, decentralized payment systems (e.g. Bitcoin) have been one of the most mature blockchain applications with widespread adoption. While the early designs (e.g. Bitcoin) are often the currency of choice by cybercriminals (e.g., in ransomware incidents), they only provide pseudo-anonymity, in the sense that anyone can deanonymize Bitcoin transactions by using information in the blockchain. To strengthen the privacy protection of decentralized payment systems, a number of solutions such as Monero and Zerocash have been proposed. However, completely Decentralized Anonymous Payment (DAP) systems can be criminally exploited, for example in online extortion and money laundering activities. Recognizing the importance of regulation, we present a novel definition of Decentralized Conditional Anonymous Payment (DCAP) and describe the corresponding security requirements. In order to construct a concrete DCAP system, we first design a Condition Anonymous Payment (CAP) scheme (based on our proposed signature of knowledge), whose security can be demonstrated under the defined formal semantic and security models. To demonstrate utility, we compare the performance of our proposal with that of Zerocash under the same parameters and testing environment.
更新日期:2020-02-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug