当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Functional Analysis Attacks on Logic Locking
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2020-01-20 , DOI: 10.1109/tifs.2020.2968183
Deepak Sirone; Pramod Subramanyan

Logic locking refers to a set of techniques that can protect integrated circuits (ICs) from counterfeiting, piracy and malicious functionality changes by an untrusted foundry. It achieves these goals by introducing new inputs, called key inputs, and additional logic to an IC such that the circuit produces the correct output only when the key inputs are set to specific values. The correct values of the key inputs are kept secret from the untrusted foundry and programmed after manufacturing and before distribution, thus rendering piracy, counterfeiting and malicious design changes infeasible. The security of logic locking relies on the assumption that the untrusted foundry cannot infer the correct values of the key inputs by analysis of the circuit. In this paper, we introduce a new attack on state-of-the-art logic locking schemes which invalidates the above assumption. We propose F unctional A nalysis attacks on L ogic L ocking algorithms (abbreviated as FALL attacks). FALL attacks have two stages. Their first stage is dependent on the locking algorithm and involves analyzing structural and functional properties of locked circuits to identify a list of potential locking keys. The second stage is algorithm agnostic and introduces a powerful addition to SAT-based attacks called key confirmation . Key confirmation can identify the correct key from a list of alternatives and works even on circuits that are resilient to the SAT attack. In comparison to past work, the FALL attack is more practical as it can often succeed (90% of successful attempts in our experiments) by only analyzing the locked netlist, without requiring oracle access to an unlocked circuit. Our experimental evaluation shows that FALL attacks are able to defeat 65 out of 80 (81%) circuits locked using Stripped-Functionality Logic Locking (SFLL-HD).
更新日期:2020-02-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug