当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Gaussian Process Based Channel Prediction for Communication-Relay UAV in Urban Environments
IEEE Transactions on Aerospace and Electronic Systems ( IF 2.797 ) Pub Date : 2019-05-20 , DOI: 10.1109/taes.2019.2917989
Pawel Ladosz; Hyondong Oh; Gan Zheng; Wen-Hua Chen

This paper presents a learning approach to predict air-to-ground communication channel strength to support the communication-relay mission using the unmanned aerial vehicle (UAV) in complex urban environments. The knowledge of the air-to-ground communication channel quality between the UAV and ground nodes is essential for optimal relay trajectory planning. However, because of the obstruction by buildings and interferences in the urban environment, modeling and predicting the communication channel strength is a challenging task. We address this issue by leveraging the Gaussian process (GP) method to learn the communication shadow fading in a given environment and then employing the optimization-based relay trajectory planning by using learned communication properties. The key advantage of this learning method over fixed communication model based approaches is that it can keep refining channel prediction and trajectory planning as more channel measurement data are obtained. Two schemes incorporating GP-based channel prediction into trajectory planning are proposed. Monte Carlo simulations demonstrate the performance gain and robustness of the proposed approaches over the existing methods.
更新日期:2020-02-11

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug