当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
A Pose Measurement Method of a Space Noncooperative Target Based on Maximum Outer Contour Recognition
IEEE Transactions on Aerospace and Electronic Systems ( IF 2.797 ) Pub Date : 2019-05-02 , DOI: 10.1109/taes.2019.2914536
Jianqing Peng; Wenfu Xu; Lei Yan; Erzhen Pan; Bin Liang; Ai-Guo Wu

The relative pose (position and attitude) measurement of space noncooperative targets is very important for on-orbit servicing activities, such as target tracking, approaching, and capturing. The traditional methods rarely consider the instability of feature extraction and image blurring caused by target tumbling. In this paper, a method based on the maximum outer contour (MOC) recognition is proposed to measure the pose of the target. Different feature extraction algorithms can simultaneously achieve close- and long-range measurement tasks. First, the trailing image is restored by the image enhancement method. Second, the “rough + fine” combination recognition method is used for contour extraction and connected component labeling of the restored image, and the target feature extraction time is reduced to one-third of traditional methods. Furthermore, the elliptical surface on the MOC is fitted by the least squares method (LSM), and the ellipse parameters (i.e., the center position, the long- and short-axes, and the deflection angle) are extracted. The accuracy of the target recognition is improved. Third, for the close-range measurement, based on the detected ellipse parameter, the pose of the noncooperative target is solved by the binocular imaging algorithm of the space circle; for the long-range measurement, the contour centroid of the target is calculated by the detected MOC, and the position of the target is solved by the LSM. Moreover, the effectiveness of the method is verified by the OpenSceneGraph numerical simulation system. Finally, an experimental system consisting of a binocular camera, a UR5 manipulator, and a satellite mockup was built. The experimental results verified the proposed method.
更新日期:2020-02-11

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug