当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimized Design and Thermal Analysis of Printed Magnetorquer for Attitude Control of Reconfigurable Nanosatellites
IEEE Transactions on Aerospace and Electronic Systems ( IF 5.1 ) Pub Date : 2020-02-01 , DOI: 10.1109/taes.2019.2933959
Muhammad Rizwan Mughal , Hassan Ali , Anwar Ali , Jaan Praks , Leonardo M. Reyneri

An attitude control system (ACS) is one of the critical subsystems of any spacecraft and typically is in charge of de-tumbling, controlling, and orienting the satellite after initial deployment and during the satellite operations. The magnetorquer is a core magnetic attitude control actuator and, therefore, a good choice for nanosatellite attitude stabilization. There are various methods to achieve control torque using the magnetorquer. An innovative design of a printed magnetorquer has been proposed for the nanosatellites, which is modular, scalable, cost effective, less prone to failure, with reduce harness and power consumption since the traces are printed either on the top layer or inner layers of the printed circuit board. The analysis in terms of generated torque with a range of input applied voltages, trace widths, outer and inner-most trace lengths is presented to achieve the optimized design. The optimum operating voltage is selected to generate the desired torque while optimizing the torque to the power ratio. The results of the analysis in terms of the selection of optimized parameters, including torque to power ratio, generated magnetic dipole moment, and power consumption, have been validated practically on a CubeSat panel. The printed magnetorquer configuration is modular which is useful to achieve mission level stabilization requirements. For spin-stabilized satellites, the rotation time analysis has been performed using the printed magnetorquer.

中文翻译:

可重构纳米卫星姿态控制印刷磁矩优化设计与热分析

姿态控制系统 (ACS) 是任何航天器的关键子系统之一,通常负责在初始部署后和卫星运行期间对卫星进行解体、控制和定向。磁矩器是核心磁姿态控制执行器,因此是纳米卫星姿态稳定的理想选择。使用磁矩器实现控制转矩的方法有多种。已经为纳米卫星提出了一种印刷磁矩的创新设计,它是模块化的、可扩展的、具有成本效益的、不易发生故障、减少了线束和功耗,因为迹线印刷在印刷的顶层或内层电路板。在输入施加电压范围内产生的扭矩方面的分析,迹线宽度,提供最外和最内走线长度以实现优化设计。选择最佳工作电压以产生所需扭矩,同时优化扭矩功率比。在选择优化参数方面的分析结果,包括扭矩功率比、产生的磁偶极矩和功耗,已在 CubeSat 面板上得到实际验证。印刷的磁力器配置是模块化的,这有助于实现任务级稳定要求。对于自旋稳定卫星,旋转时间分析是使用印刷磁矩进行的。在选择优化参数方面的分析结果,包括扭矩功率比、产生的磁偶极矩和功耗,已在 CubeSat 面板上得到实际验证。印刷的磁力器配置是模块化的,这有助于实现任务级稳定要求。对于自旋稳定卫星,旋转时间分析是使用印刷磁矩进行的。在选择优化参数方面的分析结果,包括扭矩功率比、产生的磁偶极矩和功耗,已在 CubeSat 面板上得到实际验证。印刷磁力器配置是模块化的,这有助于实现任务级稳定要求。对于自旋稳定卫星,旋转时间分析是使用印刷磁矩进行的。
更新日期:2020-02-01
down
wechat
bug