当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Nonlinear Autopilot Design for Endo- and Exoatmospheric Interceptor With Thrust Vector Control
IEEE Transactions on Aerospace and Electronic Systems ( IF 2.797 ) Pub Date : 2019-06-05 , DOI: 10.1109/taes.2019.2921181
Ju-Hyeon Hong; Chang-Hun Lee

This paper proposes an autopilot design for an interceptor with thrust vector control that operates in the endo- and exoatmospheric regions. The main objective of the proposed autopilot design is to ensure control performance in both atmospheric regions, without changing the control mechanism. In this paper, the characteristics of the aerodynamic forces in both atmospheric regions are first investigated to examine the issue of the conventional control mechanism at various altitudes. And then, a control mechanism, which can be applied to both atmospheric regions, is determined based on the analysis results. An autopilot design is then followed by utilizing the control mechanism and the feedback linearization control method. Accordingly, the proposed autopilot does not rely on changing the control mechanism depending on flight condition unlike the conventional approach, however it can adjust the control gains automatically according to the changes in flight operating conditions. In this paper, the robustness of the proposed autopilot is investigated through the tracking error analysis and the relative stability analysis in the presence of model uncertainties. The physical meaning of the proposed autopilot is also presented by comparing to the well-known three-loop control structure. Finally, numerical simulations are performed to show the performance of the proposed method.
更新日期:2020-02-11

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug