当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear Autopilot Design for Endo- and Exo-Atmospheric Interceptor with Thrust-Vector-Control
IEEE Transactions on Aerospace and Electronic Systems ( IF 5.1 ) Pub Date : 2020-02-01 , DOI: 10.1109/taes.2019.2921181
Ju-Hyeon Hong , Chang-Hun Lee

This paper proposes an autopilot design for an interceptor with thrust vector control that operates in the endo- and exoatmospheric regions. The main objective of the proposed autopilot design is to ensure control performance in both atmospheric regions, without changing the control mechanism. In this paper, the characteristics of the aerodynamic forces in both atmospheric regions are first investigated to examine the issue of the conventional control mechanism at various altitudes. And then, a control mechanism, which can be applied to both atmospheric regions, is determined based on the analysis results. An autopilot design is then followed by utilizing the control mechanism and the feedback linearization control method. Accordingly, the proposed autopilot does not rely on changing the control mechanism depending on flight condition unlike the conventional approach, however it can adjust the control gains automatically according to the changes in flight operating conditions. In this paper, the robustness of the proposed autopilot is investigated through the tracking error analysis and the relative stability analysis in the presence of model uncertainties. The physical meaning of the proposed autopilot is also presented by comparing to the well-known three-loop control structure. Finally, numerical simulations are performed to show the performance of the proposed method.

中文翻译:

具有推力矢量控制的大气内外拦截器非线性自动驾驶仪设计

本文提出了一种具有推力矢量控制的拦截器的自动驾驶仪设计,该拦截器在大气层内和大气层外区域运行。所提出的自动驾驶仪设计的主要目标是在不改变控制机制的情况下确保两个大气区域的控制性能。在本文中,首先研究了两个大气区域的空气动力特性,以研究不同高度下常规控制机制的问题。然后,根据分析结果确定可应用于两个大气区域的控制机制。然后利用控制机制和反馈线性化控制方法进行自动驾驶仪设计。因此,与传统方法不同,所提出的自动驾驶仪不依赖于根据飞行条件改变控制机制,而是可以根据飞行操作条件的变化自动调整控制增益。在本文中,通过跟踪误差分析和存在模型不确定性的相对稳定性分析,研究了所提出的自动驾驶仪的鲁棒性。通过与众所周知的三环控制结构进行比较,还提出了所提出的自动驾驶仪的物理意义。最后,进行数值模拟以显示所提出方法的性能。在存在模型不确定性的情况下,通过跟踪误差分析和相对稳定性分析来研究所提出的自动驾驶仪的鲁棒性。通过与众所周知的三环控制结构进行比较,还提出了所提出的自动驾驶仪的物理意义。最后,进行数值模拟以显示所提出方法的性能。在存在模型不确定性的情况下,通过跟踪误差分析和相对稳定性分析来研究所提出的自动驾驶仪的鲁棒性。通过与众所周知的三环控制结构进行比较,还提出了所提出的自动驾驶仪的物理意义。最后,进行数值模拟以显示所提出方法的性能。
更新日期:2020-02-01
down
wechat
bug