当前位置: X-MOL 学术Natl. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anisotropic alignments of hierarchical Li2SiO3/TiO2 @nano-C anode//LiMnPO4@nano-C cathode architectures for full-cell lithium-ion battery
National Science Review ( IF 16.3 ) Pub Date : 2020-02-11 , DOI: 10.1093/nsr/nwaa017
Hesham Khalifa 1 , Sherif A El-Safty 1 , Abdullah Reda 1 , Mohamed A Shenashen 2 , Alaa I Eid 3
Affiliation  

We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg−1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.

中文翻译:


用于全电池锂离子电池的分层 Li2SiO3/TiO2 @nano-C 阳极//LiMnPO4@nano-C 阴极结构的各向异性排列



我们报告全电池锂离子电池(LIB)模型的低成本制造和高能量密度。 Li 2 SiO 3 /TiO 2 @纳米碳阳极(LSO.TO@nano-C)和高压橄榄石LiMnPO 4 @纳米碳阴极(LMPO@nano-C)的超分层电极结构设计用于半- 以及全系统 LIB-CR2032 纽扣电池型号。基于主要架构功率驱动的LIB几何学,包括三维(3D)建模超层次结构、多尺度微/纳米架构和各向异性表面异质性在内的结构关键影响阳极/阴极LIB电极的构建设计。这种分层电极表面拓扑结构能够在充电/放电循环期间实现连续的流入/流出流速和Li +离子的快速传输路径。袋LIB型的叠层结构导致优异的充电/放电速率和237.6 Wh kg -1的能量密度。作为最有前途的锂离子电池配置,分层软包电池系统的高比能量密度可以改善电动汽车长行驶里程的能量存储。事实上,大规模锂离子电池中分层电极结构的各向异性排列证明了其优异的容量存储以及出色的耐用性和可循环性。全系统 LIB-CR2032 纽扣电池模型在 2000 个周期的长期使用寿命内保持约 89.8% 的高比容量,在 1C 倍率下保持 99.8% 的平均库仑效率,以应对未来 LIB 制造和商业化挑战的配置。
更新日期:2020-02-11
down
wechat
bug