当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Diophantine Property of Matrices and Attractors of Projective Iterated Function Systems in ℝℙ1
International Mathematics Research Notices ( IF 1.291 ) Pub Date : 2020-02-10 , DOI: 10.1093/imrn/rnz309
Solomyak B, Takahashi Y.

We prove that almost every finite collection of matrices in $GL_d( \mathbb{R} )$ and $SL_d({\mathbb{R}})$ with positive entries is Diophantine. Next we restrict ourselves to the case $d=2$. A finite set of $SL_2({\mathbb{R}})$ matrices induces a (generalized) iterated function system on the projective line ${\mathbb{RP}}^1$. Assuming uniform hyperbolicity and the Diophantine property, we show that the dimension of the attractor equals the minimum of 1 and the critical exponent.
更新日期:2020-02-10

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug