当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrahigh-efficiency desalination via a thermally-localized multistage solar still
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020/01/15 , DOI: 10.1039/c9ee04122b
Zhenyuan Xu 1, 2, 3, 4, 5 , Lenan Zhang 5, 6, 7, 8 , Lin Zhao 5, 6, 7, 8 , Bangjun Li 1, 2, 3, 4 , Bikram Bhatia 5, 6, 7, 8 , Chenxi Wang 1, 2, 3, 4 , Kyle L. Wilke 5, 6, 7, 8 , Youngsup Song 5, 6, 7, 8 , Omar Labban 5, 6, 7, 8 , John H. Lienhard 5, 6, 7, 8 , Ruzhu Wang 1, 2, 3, 4 , Evelyn N. Wang 5, 6, 7, 8
Affiliation  

Passive vapor generation systems with interfacial solar heat localization enable high-efficiency low-cost desalination. In particular, recent progress combining interfacial solar heating and vaporization enthalpy recycling through a capillary-fed multistage architecture, known as the thermally-localized multistage solar still (TMSS), significantly improves the performance of passive solar desalination. Yet, state-of-the-art experimental demonstrations of solar-to-vapor conversion efficiency are still limited since the dominant factors and the general design principle for TMSS were not well-understood. In this work, we show optimizing the overall heat and mass transport in a multistage configuration plays a key role for further improving the performance. This understanding also increases the flexibility of material choices for the TMSS design. Using a low-cost and free-of-salt accumulation TMSS architecture, we experimentally demonstrated a record-high solar-to-vapor conversion efficiency of 385% with a production rate of 5.78 L m−2 h−1 under one-sun illumination, where more than 75% of the total production was collected through condensation. This work not only significantly improves the performance of existing passive solar desalination technologies for portable and affordable drinking water, but also provides a comprehensive physical understanding and optimization principle for TMSS systems.

中文翻译:

通过热定位多级太阳能蒸馏器实现超高效脱盐

具有界面太阳热定位功能的被动式蒸汽发生系统可实现高效,低成本的脱盐。尤其是,最近的进展结合了通过毛细管加热多级架构(称为热局部多级太阳能蒸馏器(TMSS))将界面太阳能加热和汽化焓回收相结合的显着提高了被动式太阳能淡化的性能。然而,由于对TMSS的主导因素和一般设计原理还没有很好的理解,因此最新的太阳能到蒸汽转化效率的实验演示仍然受到限制。在这项工作中,我们显示出在多级配置中优化整体热量和质量传输对进一步改善性能起着关键作用。这种理解还增加了TMSS设计材料选择的灵活性。-2 h -1在一个阳光照射下,通过冷凝收集了总产量的75%以上。这项工作不仅显着提高了用于便携式和负担得起的饮用水的现有被动式太阳能淡化技术的性能,而且还为TMSS系统提供了全面的物理理解和优化原理。
更新日期:2020-03-19
down
wechat
bug