当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020/01/17 , DOI: 10.1039/c9ee02697e
J. Tyler Mefford 1, 2, 3, 4, 5 , Zhenghang Zhao 4, 6, 7, 8 , Michal Bajdich 4, 6, 7, 8 , William C. Chueh 1, 2, 3, 4, 5
Affiliation  

Assessing the reaction pathway of multi-electron-transfer reactions is an essential yet difficult task for the rational design of electrocatalysts. In this work, we develop a heuristic approach that combines thermodynamic adsorption energetics calculated through density functional theory with microkinetic modeling using the steady state approximation to interpret the potential-dependent Tafel behavior of consecutive electrochemical reactions. In doing so, we introduce a kinetic framework for ab initio calculations that ensures self-consistent adsorption energetics based on kinetically limited adsorbate coverages. The approach is applied to experimental results on CoOx(OH)2−x single crystal electrocatalyst particles yielding coverage dependent mechanistic information and identification of the rate-limiting step with standard rate constants for the oxygen evolution reaction on the (11[2 with combining macron]0) surfaces of the β-Co(OH)2, β-CoOOH, and CoO2 bulk phases. This generalizable method enables catalyst benchmarking based on determining the active species involved and associated intrinsic reaction rate constants in consecutive multi-electron-transfer reactions.

中文翻译:

结合热力学和稳态微动力学方法解释连续电化学反应的Tafel行为

评估多电子转移反应的反应路径是合理设计电催化剂必不可少的一项艰巨任务。在这项工作中,我们开发了一种启发式方法,该方法将通过密度泛函理论计算的热力学吸附能与使用稳态近似的微动力学模型相结合,以解释连续电化学反应的电势依赖性Tafel行为。为此,我们引入了一个从头算计算的动力学框架,该框架可基于动力学受限的被吸附物覆盖范围来确保自洽的吸附能。该方法适用于CoO x(OH)2− x上的实验结果单晶电催化剂颗粒产生依赖于覆盖率的机械信息,并确定具有标准速率常数的限速步骤,以便[2与组合光子组合]在β-Co(OH)2,β-CoOOH和CoO 2的(11 0)表面上发生放氧反应本体相。这种通用方法可以基于确定连续多电子转移反应中涉及的活性物种和相关的固有反应速率常数来进行催化剂标定。
更新日期:2020-02-19
down
wechat
bug