当前位置: X-MOL 学术React. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The use of process simulation in supercritical fluids applications
Reaction Chemistry & Engineering ( IF 3.9 ) Pub Date : 2020/01/16 , DOI: 10.1039/c9re00465c
Francisco Javier Gutiérrez Ortiz 1, 2, 3, 4, 5 , Andrea Kruse 6, 7, 8, 9, 10
Affiliation  

The use of supercritical fluids is spreading more and more throughout the world. The interest in them and their applications is clear from the increasing number of papers and patents in the last few years, as well as by the number of new research groups and facilities. When applied to process engineering, mathematical modelling is a powerful tool to gain insight into the impact of the process parameters under a large variety of conditions, which reduces the required experimentation and, hence, the economic and time resources. This review deals with modelling at molecule scale (molecular dynamics) and, more specifically, at macroscale (thermodynamic methods) in order to estimate thermodynamic and transport properties as well as the kinetic parameters needed for the subsequent process simulation. This latter is usually performed for chemical and energy processes, such as supercritical water gasification, supercritical water oxidation, biodiesel production using supercritical methanol and different applications of supercritical carbon dioxide, among others. As a further step, this type of simulation can be refined using computational fluid dynamics, thus optimizing the design of process units involved in specific processes in a rigorous way. Many recent papers are discussed in the context of simulation and modelling related to supercritical fluids applications, taking into account the software used to perform this type of study.

中文翻译:

过程模拟在超临界流体应用中的使用

超临界流体的使用在世界范围内越来越广泛。最近几年来,论文和专利的数量不断增加,以及新的研究小组和机构的数量,对它们及其应用的兴趣显而易见。当应用于过程工程时,数学建模是一种强大的工具,可以洞察各种条件下过程参数的影响,从而减少了所需的实验,从而减少了经济和时间资源。这篇综述涉及分子规模(分子动力学)的建模,更具体地说,是宏观尺度(热力学方法)的建模,以便估算热力学和传输性质以及后续过程模拟所需的动力学参数。后者通常用于化学和能源工艺,例如超临界水气化,超临界水氧化,使用超临界甲醇的生物柴油生产以及超临界二氧化碳的不同应用等。作为进一步的步骤,可以使用计算流体动力学来改进这种类型的模拟,从而以严格的方式优化涉及特定过程的过程单元的设计。考虑到用于执行此类研究的软件,在与超临界流体应用相关的模拟和建模的背景下讨论了许多最新论文。作为进一步的步骤,可以使用计算流体动力学来改进这种类型的模拟,从而以严格的方式优化涉及特定过程的过程单元的设计。考虑到用于执行此类研究的软件,在与超临界流体应用相关的模拟和建模的背景下讨论了许多最新论文。作为进一步的步骤,可以使用计算流体动力学来改进这种类型的模拟,从而以严格的方式优化涉及特定过程的过程单元的设计。考虑到用于执行此类研究的软件,在与超临界流体应用相关的模拟和建模的背景下讨论了许多最新论文。
更新日期:2020-03-03
down
wechat
bug