当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics
Materials Horizons ( IF 12.2 ) Pub Date : 2020-02-04 , DOI: 10.1039/c9mh01950b
Raul D. Rodriguez 1, 2, 3 , Alimzhan Khalelov 1, 2, 3 , Pavel S. Postnikov 1, 2, 3, 4, 5 , Anna Lipovka 1, 2, 3 , Elena Dorozhko 1, 2, 3 , Ihsan Amin 6, 7, 8, 9 , Gennadiy V. Murastov 1, 2, 3 , Jin-Ju Chen 10, 11, 12, 13 , Wenbo Sheng 14, 15, 16 , Marina E. Trusova 1, 2, 3 , Mohamed M. Chehimi 17, 18, 19, 20, 21 , Evgeniya Sheremet 1, 2, 3
Affiliation  

Carbon nanomaterials, especially graphene, are promising due to their abundance and the possibility to exploit them in lightweight, flexible, and wearable electronics enabling paradigms such as the Internet of Things. However, conventional methods to synthesize and integrate graphene into functional materials and flexible devices are either hazardous, time demanding, or excessively energy-consuming. To overcome these issues, here we propose a new concept based on the laser processing of single-layer diazonium-functionalized graphene. This is a safe, inexpensive, and environmentally-friendly method making it a competitive alternative for graphene-device fabrication. Flexible chemiresistors exhibit sensitivity for breath (water vapor and CO2) and ethanol detection up to 1500% higher than laser-reduced graphene oxide devices. We attribute this enhanced sensitivity to an optimal balance between structural defects and electrical conductivity. Flexible electronic circuits demonstrate a superb resilience against scratching and high current stability up to 98% with durability against 180° bending cycles for continuous operation of several weeks. This work can impact biomedical technology and electronics where tunable electrical conductivity, sensitivity, and mechanical stability are of uttermost importance.

中文翻译:

超越氧化石墨烯:用于柔性电子产品的激光工程功能化石墨烯

碳纳米材料,尤其是石墨烯,由于其丰富的存在以及在轻量,柔性和可穿戴电子设备中利用它们的可能性而成为有希望的,这些电子设备使诸如物联网的范例成为可能。但是,将石墨烯合成并整合到功能材料和柔性设备中的常规方法要么危险,耗时,要么耗能过多。为了克服这些问题,我们在此基于单层重氮官能化石墨烯的激光加工提出了一个新概念。这是一种安全,廉价且环保的方法,使其成为石墨烯器件制造的竞争选择。灵活的化学电阻显示出对呼吸的敏感性(水蒸气和CO 2)和乙醇检测比激光还原氧化石墨烯设备高出1500%。我们将这种增强的敏感性归因于结构缺陷和电导率之间的最佳平衡。柔性电子电路显示出极佳的抗刮擦性和高达98%的高电流稳定性,并具有连续180周弯曲操作的180°弯曲耐久性。这项工作可能会影响生物医学技术和电子学,其中可调节的电导率,灵敏度和机械稳定性至关重要。
更新日期:2020-02-04
down
wechat
bug