当前位置: X-MOL 学术Plant Soil › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation
Plant and Soil ( IF 3.9 ) Pub Date : 2020-02-10 , DOI: 10.1007/s11104-020-04427-1
Lucas C. R. Silva , Hans Lambers

It is well established that the functioning of terrestrial ecosystems depends on biophysical and biogeochemical feedbacks occurring at the soil-plant-atmosphere (SPA) interface. However, dynamic biophysical and biogeochemical processes that operate at local scales are seldom studied in conjunction with structural ecosystem properties that arise from broad environmental constraints. As a result, the effect of SPA interactions on how ecosystems respond to, and exert influence on, the global environment remains difficult to predict. We review recent findings that link structural and functional SPA interactions and evaluate their potential for predicting ecosystem responses to chronic environmental pressures. Specifically, we propose a quantitative framework for the integrated analysis of three major plant functional groups (evergreen conifers, broadleaf deciduous, and understory shrubs) and their distinct mycorrhizal symbionts under rising levels of carbon dioxide, changing climate, and disturbance regime. First, we explain how symbiotic and competitive strategies involving plants and soil microorganisms influence scale-free patterns of carbon, nutrient, and water use from individual organisms to landscapes. We then focus on the relationship between those patterns and structural traits such as specific leaf area, leaf area index, and soil physical and chemical properties that constrain root connectivity and canopy gas exchange. Finally, we use those relationships to predict how changes in ecosystem structure may affect processes that are important for climate stability. On the basis of emerging ecological theory and empirical biophysical and biogeochemical knowledge, we propose ten interpretive hypotheses that serve as a primary set of hierarchical relationships (or scaling rules), by which local SPA interactions can be spatially and temporally aggregated to inform broad climate change mitigation efforts. To this end, we provide a series of numerical formulations that simplify the net outcome of complex SPA interactions as a first step towards anticipating shifts in terrestrial carbon, water, and nutrient cycles.

中文翻译:

土壤-植物-大气相互作用:减缓气候变化的结构、功能和预测尺度

众所周知,陆地生态系统的功能取决于发生在土壤-植物-大气 (SPA) 界面的生物物理和生物地球化学反馈。然而,在局部尺度上运行的动态生物物理和生物地球化学过程很少与广泛的环境约束引起的结构生态系统特性一起研究。因此,SPA 相互作用对生态系统如何对全球环境做出反应和施加影响的影响仍然难以预测。我们回顾了最近将结构性和功能性 SPA 相互作用联系起来的发现,并评估了它们预测生态系统对慢性环境压力的反应的潜力。具体而言,我们提出了一个用于综合分析三种主要植物功能组(常绿针叶树、阔叶落叶灌木和林下灌木)及其独特的菌根共生体在二氧化碳水平上升、气候变化和干扰制度下。首先,我们解释了涉及植物和土壤微生物的共生和竞争策略如何影响从个体生物到景观的碳、养分和水利用的无标度模式。然后,我们关注这些模式与结构特征之间的关系,例如特定叶面积、叶面积指数以及限制根系连通性和冠层气体交换的土壤物理和化学特性。最后,我们使用这些关系来预测生态系统结构的变化如何影响对气候稳定很重要的过程。在新兴生态理论和经验生物物理和生物地球化学知识的基础上,我们提出了 10 个解释性假设,这些假设作为一组主要的层次关系(或标度规则),通过这些假设,可以在空间和时间上聚合本地 SPA 交互,为广泛的气候变化减缓工作提供信息。为此,我们提供了一系列简化复杂 SPA 相互作用的净结果的数值公式,作为预测陆地碳、水和养分循环变化的第一步。
更新日期:2020-02-10
down
wechat
bug