当前位置: X-MOL 学术Mol. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gene family expansion of pinewood nematode to detoxify its host defence chemicals.
Molecular Ecology ( IF 4.5 ) Pub Date : 2020-02-07 , DOI: 10.1111/mec.15378
Wei Zhang 1, 2 , Haiying Yu 3 , Yunxue Lv 1 , Kathryn E Bushley 4 , Jacob D Wickham 1 , Shenghan Gao 3 , Songnian Hu 3 , Lilin Zhao 1, 5 , Jianghua Sun 1, 5
Affiliation  

Gene gain/loss in the context of gene family dynamics plays an important role in evolutionary processes as organisms, particularly invasive species, adapt to new environments or niches. One notable example of this is the duplication of digestive proteases in some parasitic insects and helminths to meet nutritional requirements during animal parasitism. However, whether gene family expansion participates in the adaptation of a plant parasite nematode to its host remains unknown. Here, we compared the newly sequenced genomes of the pinewood nematode, Bursaphelenchus xylophilus, with the genomes of free-living, animal-parasitic and plant-parasitic nematodes. The results showed gene expansions occurring in 51 gene families in B. xylophilus, especially in xenobiotic detoxification pathways, including flavin monooxygenase (FMO), cytochrome P450 (CYP450), short chain dehydrogenase (SDR), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), UDP-glucuronosyltransferase (UGT) and glutathione S-transferase (GST). Although a majority of these expansions probably resulted from gene duplications, nine ADH genes were potentially acquired by horizontal gene transfer (HGT) from fungi. From the transcriptomes of B. xylophilus treated with pine saplings and terpenes, candidate xenobiotic detoxification genes were identified. We propose that host defence chemicals led to gene family expansions of xenobiotic detoxification pathways in B. xylophilus facilitating its survival in pine resin ducts. This study contributes to a better understanding of how a parasitic nematode adapts to its host.

中文翻译:

松材线虫的基因家族扩展,以解毒其宿主防御化学物质。

随着生物特别是入侵物种适应新环境或生态位,基因家族动态中的基因损益在进化过程中起着重要作用。一个明显的例子是在某些寄生昆虫和蠕虫中复制消化蛋白酶以满足动物寄生期间的营养需求。然而,基因家族的扩展是否参与植物寄生线虫对其宿主的适应仍是未知的。在这里,我们将松木线虫Bursaphelenchus xylophilus的新测序基因组与自由活动,动物和植物寄生线虫的基因组进行了比较。结果表明,在木糖双歧杆菌中有51个基因家族发生了基因扩展,特别是在异黄酮解毒途径中,包括黄素单加氧酶(FMO),细胞色素P450(CYP450),短链脱氢酶(SDR),醇脱氢酶(ADH),醛脱氢酶(ALDH),UDP-葡萄糖醛糖基转移酶(UGT)和谷胱甘肽S-转移酶(GST)。尽管这些扩展中的大多数可能是由于基因重复造成的,但通过真菌的水平基因转移(HGT)可能获得了9个ADH基因。从用松树苗和萜烯处理过的木糖双歧杆菌的转录组中,鉴定出候选的异种解毒基因。我们提出,宿主防御化学物质导致了木糖双歧杆菌异种毒素解毒途径的基因家族扩展,从而促进其在松树树脂管道中的生存。这项研究有助于更好地了解寄生线虫如何适应其宿主。UDP-葡糖醛酸糖基转移酶(UGT)和谷胱甘肽S-转移酶(GST)。尽管这些扩展中的大多数可能是由于基因重复造成的,但通过真菌的水平基因转移(HGT)可能获得了9个ADH基因。从用松树苗和萜烯处理过的木糖双歧杆菌的转录组中,鉴定出候选的异种解毒基因。我们提出,宿主防御化学物质导致了木糖双歧杆菌异种毒素解毒途径的基因家族扩展,从而促进其在松树树脂管道中的生存。这项研究有助于更好地了解寄生线虫如何适应其宿主。UDP-葡糖醛酸糖基转移酶(UGT)和谷胱甘肽S-转移酶(GST)。尽管这些扩展中的大多数可能是由于基因重复造成的,但通过真菌的水平基因转移(HGT)可能获得了9个ADH基因。从用松树苗和萜烯处理过的木糖双歧杆菌的转录组中,鉴定出候选的异种解毒基因。我们提出,宿主防御化学物质导致了木糖双歧杆菌异种毒素解毒途径的基因家族扩展,从而促进其在松树树脂管道中的生存。这项研究有助于更好地了解寄生线虫如何适应其宿主。可能通过水平基因转移(HGT)从真菌中获得了9个ADH基因。从用松树苗和萜烯处理过的木糖双歧杆菌的转录组中,鉴定出候选的异种解毒基因。我们提出,宿主防御化学物质导致了木糖双歧杆菌异种毒素解毒途径的基因家族扩展,从而促进其在松树树脂管道中的生存。这项研究有助于更好地了解寄生线虫如何适应其宿主。可能通过水平基因转移(HGT)从真菌中获得了9个ADH基因。从用松树苗和萜烯处理过的木糖双歧杆菌的转录组中,鉴定出候选的异种解毒基因。我们提出,宿主防御化学物质导致了木糖双歧杆菌中异种生物解毒途径的基因家族扩展,从而促进其在松树树脂管道中的生存。这项研究有助于更好地了解寄生线虫如何适应其宿主。
更新日期:2020-02-18
down
wechat
bug