当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structured Fe3O4-doped Ordered Mesoporous Carbon Catalyst Supported on Sintered Metal Fibers for Intensifying Phenol Degradation
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.psep.2020.02.008
Yan Shao , Jiahui Ruan , Xiaoxin Li , Yibiao Li , Huanhao Chen

Abstract Microfibrous-structured catalysts are materials that address the mass/heat transfer limitation and achieve catalytic process intensification, showing great promise for enabling practical environmental catalysis such as continuous wastewater treatment process. In this work, Fe3O4-doped ordered mesoporous carbon (OMC) catalyst supported on porous sintered metal fibers (Fe-OMC/SMFs) was prepared using a new yet simple “one-pot” method and used as a Fenton-like heterogeneous catalyst. The obtained catalysts were carefully characterized by TGA-DTG, BET, XRD, SEM-EDS, XPS and H2-TPR techniques. Structured reactor was designed and developed using developed microfibrous-structured catalysts, demonstrating an excellent catalytic performance for continuous heterogeneous Fenton oxidation of phenol. Specifically, both phenol and H2O2 conversions increased slightly as carbonization temperatures increasing from 400 to 1000 °C. Compared to Fe-OMC pellet catalyst, the developed structured catalyst showed an improved catalytic activity (i.e. ∼100 % phenol/H2O2 conversions), and remarkable long-term stability (i.e. ∼100 % phenol conversion over a 7-h longevity test). Additionally, the developed Fe-OMC/SMFs catalyst showed Fe leaching amounts of ∼10 mg L−1 during reaction, being significantly lower than that of Fe-OMC pellet catalyst (i.e. ∼500 mg L−1). Experimental results revealed that well-dispersed Fe3O4 nanoparticles in OMC and three-dimensional microfibrous networks and large void volume of SMFs support are significantly benefit to enhance mass transfer and contacting efficiency between active sites and reactants, and thus achieve the process intensification of catalytic degradation of phenol.

中文翻译:

负载在烧结金属纤维上的结构化 Fe3O4 掺杂有序介孔碳催化剂增强苯酚降解

摘要 微纤维结构催化剂是解决传质/传热限制并实现催化过程强化的材料,在实现实际环境催化(如连续废水处理过程)方面显示出巨大的潜力。在这项工作中,使用一种新的简单的“一锅法”方法制备了负载在多孔烧结金属纤维(Fe-OMC/SMFs)上的 Fe3O4 掺杂有序介孔碳(OMC)催化剂,并用作类芬顿多相催化剂。所得催化剂通过 TGA-DTG、BET、XRD、SEM-EDS、XPS 和 H2-TPR 技术进行了仔细表征。使用开发的微纤维结构催化剂设计和开发了结构化反应器,展示了对苯酚的连续多相芬顿氧化的优异催化性能。具体来说,随着碳化温度从 400°C 增加到 1000°C,苯酚和 H2O2 的转化率略有增加。与 Fe-OMC 颗粒催化剂相比,开发的结构化催化剂表现出更高的催化活性(即约 100% 苯酚/H2O2 转化率)和显着的长期稳定性(即在 7 小时寿命测试中约 100% 苯酚转化率)。此外,开发的 Fe-OMC/SMFs 催化剂在反应过程中表现出约 10 mg L-1 的 Fe 浸出量,显着低于 Fe-OMC 颗粒催化剂(即约 500 mg L-1)。实验结果表明,在 OMC 中分散良好的 Fe3O4 纳米颗粒和三维微纤维网络和大空隙体积的 SMF 载体显着有利于提高活性位点与反应物之间的传质和接触效率,
更新日期:2020-04-01
down
wechat
bug