当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Significance of Subband Features for Synthetic Speech Detection
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2019-11-28 , DOI: 10.1109/tifs.2019.2956589
Jichen Yang; Rohan Kumar Das; Haizhou Li

In text-to-speech or voice conversion based synthetic speech detection, it is a common practice that spectral information over the entire frequency band is used for feature representation. We propose a new method, referred to as subband transform, that characterizes the signals by subband. It is found that subband transform captures the artifacts in synthetic speech more effectively than full band transform. We propose equal subband transform, octave subband transform, and mel subband transform for three novel features, namely, constant-Q equal subband transform (CQ-EST), constant-Q octave subband transform (CQ-OST) and discrete Fourier mel subband transform (DF-MST). We evaluate the three features on the ASVspoof 2015, noisy ASVspoof 2015 and ASVspoof 2019 logical access corpora. The experiments show that the proposed CQ-EST feature achieves an average equal error rate of 0.056% on ASVspoof 2015 evaluation set. The study observes that the features based on subband transform outperform those based on full band transform under both clean and noisy conditions. In addition, the tandem detection cost function of CQ-OST can reach 0.188 on ASVspoof 2019 logical access evaluation set.
更新日期:2020-02-07

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug