当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Significance of Subband Features for Synthetic Speech Detection
IEEE Transactions on Information Forensics and Security ( IF 6.013 ) Pub Date : 2019-11-28 , DOI: 10.1109/tifs.2019.2956589
Jichen Yang; Rohan Kumar Das; Haizhou Li

In text-to-speech or voice conversion based synthetic speech detection, it is a common practice that spectral information over the entire frequency band is used for feature representation. We propose a new method, referred to as subband transform, that characterizes the signals by subband. It is found that subband transform captures the artifacts in synthetic speech more effectively than full band transform. We propose equal subband transform, octave subband transform, and mel subband transform for three novel features, namely, constant-Q equal subband transform (CQ-EST), constant-Q octave subband transform (CQ-OST) and discrete Fourier mel subband transform (DF-MST). We evaluate the three features on the ASVspoof 2015, noisy ASVspoof 2015 and ASVspoof 2019 logical access corpora. The experiments show that the proposed CQ-EST feature achieves an average equal error rate of 0.056% on ASVspoof 2015 evaluation set. The study observes that the features based on subband transform outperform those based on full band transform under both clean and noisy conditions. In addition, the tandem detection cost function of CQ-OST can reach 0.188 on ASVspoof 2019 logical access evaluation set.
更新日期:2020-04-22

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug