当前位置: X-MOL 学术Br. J. Anaesth. › 论文详情
Effects of variable versus nonvariable controlled mechanical ventilation on pulmonary inflammation in experimental acute respiratory distress syndrome in pigs.
British Journal of Anaesthesia ( IF 6.199 ) Pub Date : 2020-02-04 , DOI: 10.1016/j.bja.2019.12.040
Jakob Wittenstein,Martin Scharffenberg,Anja Braune,Robert Huhle,Thomas Bluth,Moritz Herzog,Andreas Güldner,Lorenzo Ball,Francesca Simonassi,Ines Zeidler-Rentzsch,Marcos F Vidal Melo,Thea Koch,Patricia R M Rocco,Paolo Pelosi,Jörg Kotzerke,Marcelo Gama de Abreu,Thomas Kiss

BACKGROUND Mechanical ventilation with variable tidal volumes (VT) may improve lung function and reduce ventilator-induced lung injury in experimental acute respiratory distress syndrome (ARDS). However, previous investigations were limited to less than 6 h, and control groups did not follow clinical standards. We hypothesised that 24 h of mechanical ventilation with variable VT reduces pulmonary inflammation (as reflected by neutrophil infiltration), compared with standard protective, nonvariable ventilation. METHODS Experimental ARDS was induced in 14 anaesthetised pigs with saline lung lavage followed by injurious mechanical ventilation. Pigs (n=7 per group) were randomly assigned to using variable VT or nonvariable VT modes of mechanical ventilation for 24 h. In both groups, ventilator settings including positive end-expiratory pressure and oxygen inspiratory fraction were adjusted according to the ARDS Network protocol. Pulmonary inflammation (primary endpoint) and perfusion were assessed by positron emission tomography using 2-deoxy-2-[18F]fluoro-d-glucose and 68Gallium (68Ga)-labelled microspheres, respectively. Gas exchange, respiratory mechanics, and haemodynamics were quantified. Lung aeration was determined using CT. RESULTS The specific global uptake rate of 18F-FDG increased to a similar extent regardless of mode of mechanical ventilation (median uptake for variable VT=0.016 min-1 [inter-quartile range, 0.012-0.029] compared with median uptake for nonvariable VT=0.037 min-1 [0.008-0.053]; P=0.406). Gas exchange, respiratory mechanics, haemodynamics, and lung aeration and perfusion were similar in both variable and nonvariable VT ventilatory modes. CONCLUSION In a porcine model of ARDS, 24 h of mechanical ventilation with variable VT did not attenuate pulmonary inflammation compared with standard protective mechanical ventilation with nonvariable VT.
更新日期:2020-02-07

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug