当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2
Science ( IF 44.7 ) Pub Date : 2020-02-06 , DOI: 10.1126/science.aay4217
F Pelayo García de Arquer 1 , Cao-Thang Dinh 1 , Adnan Ozden 2 , Joshua Wicks 1, 3 , Christopher McCallum 2 , Ahmad R Kirmani 4 , Dae-Hyun Nam 1 , Christine Gabardo 2 , Ali Seifitokaldani 1 , Xue Wang 1 , Yuguang C Li 1 , Fengwang Li 1 , Jonathan Edwards 2 , Lee J Richter 4 , Steven J Thorpe 3 , David Sinton 2 , Edward H Sargent 1
Affiliation  

Graceful choreography for CO2 and H2O One challenge for efficient electrochemical reduction of carbon dioxide (CO2) is that the gas is hydrophobic, but many of its desirable reactions require water (H2O). García de Arquer et al. addressed this problem by combining a copper electrocatalyst with an ionomer assembly that intersperses sulfonate-lined paths for the H2O with fluorocarbon channels for the CO2. The electrode architecture enables production of two-carbon products such as ethylene and ethanol at current densities just over an ampere per square centimeter. Science, this issue p. 661 Electrode architecture reconciles the hydrophobic nature of CO2 with the need for nearby water to reduce it to ethylene. Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO2) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.

中文翻译:

活性大于 1 A cm−2 的 CO2 电解为多碳产品

CO2 和 H2O 的优雅编排 有效电化学还原二氧化碳 (CO2) 的一项挑战是该气体是疏水性的,但其许多理想的反应需要水 (H2O)。García de Arquer 等人。通过将铜电催化剂与离聚物组件相结合,该组件将 H2O 的磺酸盐衬里路径与 CO2 的碳氟化合物通道相结合,从而解决了这个问题。这种电极结构能够以略高于每平方厘米 1 安培的电流密度生产乙烯和乙醇等双碳产品。科学,这个问题 p。661 电极结构将 CO2 的疏水性与附近的水还原成乙烯的需要相协调。电解为将二氧化碳 (CO2) 等温室气体升级为有价值的燃料和原料提供了一条有吸引力的途径;然而,生产率通常受到气体通过液体电解质扩散到催化剂表面的限制。在这里,我们提出了一种催化剂:离聚物本体异质结 (CIBH) 结构,可将气体、离子和电子传输解耦。CIBH 包含金属和具有疏水和亲水功能的超细离聚物层,可将气体和离子传输从几十纳米扩展到微米级。通过应用这种设计策略,我们在 7 M 氢氧化钾电解质(pH ≈ 15)中以 1.3 安培/平方厘米的乙烯分电流密度在 45% 的阴极能效下实现了铜上的 CO2 电还原。离聚物本体异质结 (CIBH) 架构,可将气体、离子和电子传输解耦。CIBH 包含金属和具有疏水和亲水功能的超细离聚物层,可将气体和离子传输从几十纳米扩展到微米级。通过应用这种设计策略,我们在 7 M 氢氧化钾电解质(pH ≈ 15)中以 1.3 安培/平方厘米的乙烯分电流密度在 45% 的阴极能效下实现了铜上的 CO2 电还原。离聚物本体异质结 (CIBH) 架构,可将气体、离子和电子传输解耦。CIBH 包含金属和具有疏水和亲水功能的超细离聚物层,可将气体和离子传输从几十纳米扩展到微米级。通过应用这种设计策略,我们在 7 M 氢氧化钾电解质 (pH ≈ 15) 中实现了铜上的 CO2 电还原,乙烯分电流密度为 1.3 安培/平方厘米,阴极能效为 45%。
更新日期:2020-02-06
down
wechat
bug