当前位置: X-MOL 学术Curr. Opin. Solid State Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Degradable Piezoelectric Biomaterials for Wearable and Implantable Bioelectronics.
Current Opinion in Solid State & Materials Science ( IF 11.0 ) Pub Date : 2020-02-06 , DOI: 10.1016/j.cossms.2020.100806
Jun Li 1 , Yin Long 1 , Fan Yang 1 , Xudong Wang 1
Affiliation  

Current bioelectronics are facing a paradigm shift from old-fashioned unrecyclable materials to green and degradable functional materials with desired biocompatibility. As an essential electromechanical coupling component in many bioelectronics, new piezoelectric materials are being developed with biodegradability, as well as desired mechanical and electromechanical properties for the next generation implantable and wearable bioelectronics. In this review, we provide an overview of the major advancements in biodegradable piezoelectric materials. Different natural (such as peptide, amino acids, proteins, cellulose, chitin, silk, collagen, and M13 phage) and synthetic piezoelectric materials (such as polylactic acid) are discussed to reveal the underlying electromechanical coupling mechanism at the molecular level, together with typical approaches to the alignment of orientation and polarization to boost their electromechanical performance. Meanwhile, in vivo and in vitro degradation manners of those piezoelectric materials are summarized and compared. Representative developments of typical electronic prototypes leveraging these materials are also discussed. At last, challenges toward practical applications are pointed out together with potential research opportunities that might be critical in this new materials research area.

中文翻译:

用于可穿戴和植入式生物电子学的可降解压电生物材料。

当前的生物电子学正面临着从老式不可回收材料到具有所需生物相容性的绿色可降解功能材料的范式转变。作为许多生物电子学中重要的机电耦合组件,人们正在开发具有生物可降解性以及下一代可植入和可穿戴生物电子学所需的机械和机电性能的新型压电材料。在这篇综述中,我们概述了可生物降解压电材料的主要进展。讨论了不同的天然材料(如肽、氨基酸、蛋白质、纤维素、甲壳质、丝、胶原蛋白和M13噬菌体)和合成压电材料(如聚乳酸),以揭示分子水平上潜在的机电耦合机制,以及对准方向和极化以提高其机电性能的典型方法。同时,对这些压电材料的体内和体外降解方式进行了总结和比较。还讨论了利用这些材料的典型电子原型的代表性开发。最后,指出了实际应用面临的挑战以及这一新材料研究领域可能至关重要的潜在研究机会。
更新日期:2020-02-06
down
wechat
bug