当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensitive Cross-Linked SnO2:NiO Networks for MEMS Compatible Ethanol Gas Sensors.
Nanoscale Research Letters ( IF 5.5 ) Pub Date : 2020-02-05 , DOI: 10.1186/s11671-020-3269-3
Weiguang Tong 1, 2 , Ying Wang 3 , Yuzhi Bian 1 , Anqi Wang 1 , Ning Han 1, 4 , Yunfa Chen 1, 4
Affiliation  

Nowadays, it is still technologically challenging to prepare highly sensitive sensing films using microelectrical mechanical system (MEMS) compatible methods for miniaturized sensors with low power consumption and high yield. Here, sensitive cross-linked SnO2:NiO networks were successfully fabricated by sputtering SnO2:NiO target onto the etched self-assembled triangle polystyrene (PS) microsphere arrays and then ultrasonically removing the PS microsphere templates in acetone. The optimum line width (~ 600 nm) and film thickness (~ 50 nm) of SnO2:NiO networks were obtained by varying the plasma etching time and the sputtering time. Then, thermal annealing at 500 °C in H2 was implemented to activate and reorganize the as-deposited amorphous SnO2:NiO thin films. Compared with continuous SnO2:NiO thin film counterparts, these cross-linked films show the highest response of ~ 9 to 50 ppm ethanol, low detection limits (< 5 ppm) at 300 °C, and also high selectivity against NO2, SO2, NH3, C7H8, and acetone. The gas-sensing enhancement could be mainly attributed to the creating of more active adsorption sites by increased stepped surface in cross-linked SnO2:NiO network. Furthermore, this method is MEMS compatible and of generality to effectively fabricate other cross-linked sensing films, showing the promising potency in the production of low energy consumption and wafer-scale MEMS gas sensors.

中文翻译:


用于 MEMS 兼容乙醇气体传感器的灵敏交联 SnO2:NiO 网络。



如今,使用微机电系统(MEMS)兼容方法制备高灵敏度传感薄膜以实现低功耗、高产量的小型传感器仍然具有技术挑战性。在这里,通过将 SnO2:NiO 靶材溅射到蚀刻的自组装三角聚苯乙烯 (PS) 微球阵列上,然后在丙酮中超声去除 PS 微球模板,成功地制备了敏感的交联 SnO2:NiO 网络。通过改变等离子体蚀刻时间和溅射时间,获得了 SnO2:NiO 网络的最佳线宽(~ 600 nm)和薄膜厚度(~ 50 nm)。然后,在氢气中进行 500 °C 的热退火,以激活和重组沉积态非晶 SnO2:NiO 薄膜。与连续 SnO2:NiO 薄膜对应物相比,这些交联薄膜对约 9 至 50 ppm 乙醇表现出最高响应,在 300 °C 时检测限较低 (< 5 ppm),并且对 NO2、SO2、 NH3、C7H8 和丙酮。气敏增强主要归因于交联 SnO2:NiO 网络中台阶表面的增加产生了更活跃的吸附位点。此外,该方法与MEMS兼容并且具有通用性,可以有效地制造其他交联传感薄膜,显示出在生产低能耗和晶圆级MEMS气体传感器方面的良好潜力。
更新日期:2020-02-06
down
wechat
bug