当前位置: X-MOL 学术Synth. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical insights on the high and differential charge transfer performance of dithienyl-diketopyrrolopyrrole-based polymers as ambipolar semiconductors
Synthetic Metals ( IF 4.0 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.synthmet.2019.116290
Jing-Ai Qiao , Yujing Jin , Chang Liu , Ling Luo , Xin Chi , Yuexing Zhang , Ming-Hua Zeng

Abstract Diketopyrrolopyrrole (DPP)-containing polymers are among the highest mobility semiconductors for field-effect transistor applications. The molecular geometries, electronic structures and charge transport properties as ambipolar organic semiconductors of two series of total 24 donor–acceptor dithienyl-diketopyrrolopyrrole-based oligomers mDTDPPAr and nBDTDPPAr (m = 1–4, n = 1–2, Ar = TT, BT, BDT, TVT) are investigated theoretically through density functional theory and classical Marcus charge transfer theory. The effects of oligomer length form = 1–4, different Ar groups, and different Ar position on the structures and charge transfer properties are systematically studied. It was found that expanding π-conjugate backbone is a viable method to improve their semiconductor performance. Oligomers 4DTDPPTT, 4DTDPPBT, 4DTDPPTVT possess prominent ambipolar semiconductors properties with charge transfer mobilities of 9.62, 10.73, 12.60 cm2 V−1 s−1 for hole and of 7.54, 8.06, 15.56 cm2 V−1 s−1 for electron, respectively. 4DTDPPBDT exhibits large but unbalanced ambipolar performance with hole/electron transfer mobilities of 10.86/20.17 cm2 V−1 s−1 due to the special conjugation of BDT. Changing the order and position of donor and acceptor units has less significant influence on charge transfer mobility. Anisotropic mobilities are also studied to clarify the different charge transfer directions.

中文翻译:

基于二噻吩基-二酮吡咯并吡咯的聚合物作为双极性半导体的高和微分电荷转移性能的理论见解

摘要 含二酮吡咯并吡咯 (DPP) 的聚合物是场效应晶体管应用中迁移率最高的半导体之一。分子几何、电子结构和电荷传输特性作为两个系列共 24 个供体-受体二噻吩基-二酮吡咯并吡咯基低聚物 mDTDPPar 和 nBDTDPPAr (m = 1-4, n = 1-2, Ar = TT, BT) 的双极性有机半导体, BDT, TVT) 通过密度泛函理论和经典马库斯电荷转移理论进行理论研究。系统地研究了低聚物长度形式 = 1-4、不同的 Ar 基团和不同的 Ar 位置对结构和电荷转移性能的影响。发现扩展π共轭骨架是提高其半导体性能的可行方法。低聚物 4DTDPPTT、4DTDPPBT、4DTDPPTVT 具有突出的双极性半导体特性,空穴的电荷转移迁移率为 9.62、10.73、12.60 cm2 V-1 s-1,电子的电荷转移迁移率为 7.54、8.06、15.56 cm2 V-1 s-1。由于 BDT 的特殊共轭,4DTDPPBDT 表现出较大但不平衡的双极性性能,空穴/电子转移迁移率为 10.86/20.17 cm2 V-1 s-1。改变施主和受主单元的顺序和位置对电荷转移迁移率的影响较小。还研究了各向异性迁移率以阐明不同的电荷转移方向。由于 BDT 的特殊共轭,4DTDPPBDT 表现出较大但不平衡的双极性性能,空穴/电子转移迁移率为 10.86/20.17 cm2 V-1 s-1。改变施主和受主单元的顺序和位置对电荷转移迁移率的影响较小。还研究了各向异性迁移率以阐明不同的电荷转移方向。由于 BDT 的特殊共轭,4DTDPPBDT 表现出较大但不平衡的双极性性能,空穴/电子转移迁移率为 10.86/20.17 cm2 V-1 s-1。改变施主和受主单元的顺序和位置对电荷转移迁移率的影响较小。还研究了各向异性迁移率以阐明不同的电荷转移方向。
更新日期:2020-03-01
down
wechat
bug