当前位置: X-MOL 学术Prog. Retin. Eye. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cell types and cell circuits in primate retina.
Progress in Retinal and Eye Research ( IF 18.6 ) Pub Date : 2020-02-05 , DOI: 10.1016/j.preteyeres.2020.100844
Ulrike Grünert 1 , Paul R Martin 1
Affiliation  

This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.



中文翻译:


灵长类动物视网膜的细胞类型和细胞回路。



这篇综述总结了我们目前对灵长类动物(包括人类视网膜)的了解,重点关注双极细胞、无长突细胞和神经节细胞及其连接性。我们写作的主要动机有两个。首先,研究视网膜疾病的非侵入性成像方法的最新进展意味着更好地了解灵长类动物视网膜正在成为基础科学和临床科学的重要目标。其次,转基因小鼠越来越多地用作人类视网膜疾病的动物模型。因此,了解灵长类动物和啮齿类动物的视网膜在多大程度上具有可比性非常重要。我们首先比较灵长类动物和啮齿类动物视网膜中的细胞群,重点是中央凹(尽管尺寸很小)如何主导灵长类动物视网膜的神经景观。接下来我们总结关于灵长类动物视网膜感受器后神经元群的已知和未知。灵长类动物双极细胞和神经节细胞的清单现已接近完成,其中包括约 12 种双极细胞和至少 17 种神经节细胞。灵长类神经节细胞在整个视网膜的树突区域大小方面表现出明显的差异,并且它们的形态与小鼠视网膜神经节细胞的形态明显不同。与双极细胞和神经节细胞相比,无长突细胞表现出更高的形态多样性:它们可以包含 40 多种类型。许多无长突类型在灵长类动物和小鼠之间似乎是保守的,但在任何灵长类动物或非灵长类动物的视网膜中,只有少数类型的功能是已知的。无长突细胞似乎是猴子和小鼠视网膜研究的最后前沿。

更新日期:2020-02-05
down
wechat
bug