当前位置: X-MOL 学术Catal. Surv. Asia › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational investigation of M1/W6S8 (M = Fe, Ru, and Os) single-atom catalysts for CO2 hydrogenation
Catalysis Surveys from Asia ( IF 2.1 ) Pub Date : 2018-06-26 , DOI: 10.1007/s10563-018-9252-7
Qian Zhang , Ling Guo , Zijun Hao

CO2 hydrogenation to produce useful chemicals (such as CO, CH4, CH3OH, C2H4 and C2H6) plays a pivotal role in future energy conversion and storage, in which catalysts lie at the heart. We first performed density functional theory calculations to investigate the mechanism for the CO2 hydrogenation to CO through the reverse water–gas shift (RWGS) reaction over M1/W6S8 (M = Fe, Ru, and Os) single-atom catalysts (SACs). The results showed that mechanism C (formic acid mechanism) on the Fe1/W6S8 single-atom catalyst is the most suitable pathway for RWGS with 30.1 kcal/mol rate-determining energy barrier. Additionally, on the basis of the energetic span model (ESM) and d-band center position, it is demonstrated that Fe1/W6S8 is effective catalysts for the reaction. Afterward, we chose the most higher catalytic activity catalysts Fe1/W6S8 for CO hydrogenation to CH4·CH3OH, C2H4 and C2H6. CH4* is formed via CO* → COH* → HCOH* → CH* → CH2* → CH3* → CH4*, the effective barrier for CH4* formation is 24.8 kcal/mol. CH3OH* is formed via CO* → COH* → HCOH* → H2COH* → CH3OH*, the effective barrier for CH3OH* formation is 26.0 kcal/mol. On Fe1/W6S8, the CH* species is the most favorable monomeric CHx* species for production of C2H4 and C2H6, whose formation goes through a path of CO* → COH* → HCOH* → CH*. Once CH* is produced, it will be more selective to C2H4 via C–C coupling of CH*, rather than its hydrogenation to CH4 due to the higher hydrogenation barrier of CH2 species relative to the barriers for CH* + CH* coupling and subsequent conversion to C2H4. Ultimately, C2H6 can be produced from further hydrogenation of C2H4 with moderate barriers. The present insights are helpful for the design and optimization of highly efficient Fe1/W6S8 SACs used in C2H4 and C2H6 formation from CO2 hydrogenation.



中文翻译:

M的计算研究1个/瓦6小号8 (M = Fe,Ru和Os)用于CO的单原子催化剂2 氢化

CO 2氢化产生有用的化学物质(例如CO,CH 4,CH 3 OH,C 2 H 4和C 2 H 6)在未来的能量转换和存储中起着关键作用,其中催化剂位于核心位置。我们首先进行密度泛函理论计算,以研究在M 1 / W 6 S 8(M = Fe,Ru和Os)单原子上通过反向水煤气变换(RWGS)反应将CO 2加氢成CO的机理。催化剂(SAC)。结果表明,Fe 1 / W 6 S 8的机理C(甲酸机理)单原子催化剂是具有30.1 kcal / mol速率确定能垒的RWGS最合适的途径。另外,基于高能跨度模型(ESM)和d带中心位置,证明Fe 1 / W 6 S 8是该反应的有效催化剂。之后,我们选择了催化活性最高的催化剂Fe 1 / W 6 S 8进行CO加氢成CH 4 ·CH 3 OH,C 2 H 4和C 2 H 6。CH 4 *是通过CO *→COH *→HCOH *→CH *→CH 2 *→CH 3形成的*→CH 4 *,CH 4 *形成的有效势垒为24.8 kcal / mol。CH 3 OH *是通过CO *→COH *→HCOH *→H 2 COH *→ CH 3 OH *形成的,形成CH 3 OH *的有效势垒为26.0 kcal / mol。在Fe 1 / W 6 S 8上,CH *是最适合生产C 2 H 4和C 2 H 6的单体CHx * ,其形成过程通过CO *→COH *→HCOH *→ CH *。生成CH *后,它将对C 2 H 4更具选择性通过CH *的C–C偶联,而不是将其氢化为CH 4,这是因为CH 2物种的氢化屏障相对于CH * + CH *偶联和随后转化为C 2 H 4的屏障更高。最终,C 2 H 6可以由具有中等阻挡层的C 2 H 4进一步氢化而产生。目前的见解有助于设计和优化用于由CO 2形成C 2 H 4和C 2 H 6的高效Fe 1 / W 6 S 8 SAC。 氢化。

更新日期:2018-06-26
down
wechat
bug