当前位置: X-MOL 学术Int. J. Numer. Method. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An algorithm for coupling multibranch in vitro experiment to numerical physiology simulation for a hybrid cardiovascular model.
International Journal for Numerical Methods in Biomedical Engineering ( IF 2.2 ) Pub Date : 2019-12-09 , DOI: 10.1002/cnm.3289
Ehsan Mirzaei 1 , Masoud Farahmand 1 , Ethan Kung 1, 2
Affiliation  

The hybrid cardiovascular modeling approach integrates an in vitro experiment with a computational lumped‐parameter simulation, enabling direct physical testing of medical devices in the context of closed‐loop physiology. The interface between the in vitro and computational domains is essential for properly capturing the dynamic interactions of the two. To this end, we developed an iterative algorithm capable of coupling an in vitro experiment containing multiple branches to a lumped‐parameter physiology simulation. This algorithm identifies the unique flow waveform solution for each branch of the experiment using an iterative Broyden's approach. For the purpose of algorithm testing, we first used mathematical surrogates to represent the in vitro experiments and demonstrated five scenarios where the in vitro surrogates are coupled to the computational physiology of a Fontan patient. This testing approach allows validation of the coupling result accuracy as the mathematical surrogates can be directly integrated into the computational simulation to obtain the “true solution” of the coupled system. Our algorithm successfully identified the solution flow waveforms in all test scenarios with results matching the true solutions with high accuracy. In all test cases, the number of iterations to achieve the desired convergence criteria was less than 130. To emulate realistic in vitro experiments in which noise contaminates the measurements, we perturbed the surrogate models by adding random noise. The convergence tolerance achievable with the coupling algorithm remained below the magnitudes of the added noise in all cases. Finally, we used this algorithm to couple a physical experiment to the computational physiology model to demonstrate its real‐world applicability.

中文翻译:


一种将多分支体外实验与混合心血管模型的数值生理学模拟相结合的算法。



混合心血管建模方法将体外实验与计算集总参数模拟相结合,从而能够在闭环生理学背景下对医疗设备进行直接物理测试。体外域和计算域之间的接口对于正确捕获两者的动态相互作用至关重要。为此,我们开发了一种迭代算法,能够将包含多个分支的体外实验与集总参数生理学模拟相耦合。该算法使用迭代布罗伊登方法确定实验每个分支的唯一流量波形解决方案。为了进行算法测试,我们首先使用数学替代物来代表体外实验,并演示了体外替代物与 Fontan 患者的计算生理学相结合的五种场景。这种测试方法可以验证耦合结果的准确性,因为数学替代可以直接集成到计算模拟中以获得耦合系统的“真实解”。我们的算法成功识别了所有测试场景中的溶液流波形,结果与真实溶液高度匹配。在所有测试案例中,达到所需收敛标准的迭代次数少于 130 次。为了模拟噪声污染测量结果的实际体外实验,我们通过添加随机噪声来扰乱替代模型。在所有情况下,耦合算法可实现的收敛容差均低于添加噪声的幅度。最后,我们使用该算法将物理实验与计算生理学模型结合起来,以证明其现实世界的适用性。
更新日期:2019-12-09
down
wechat
bug