当前位置: X-MOL 学术Adv. Struct. Chem. Imag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic scan control in STEM: spiral scans
Advanced Structural and Chemical Imaging Pub Date : 2016-06-13 , DOI: 10.1186/s40679-016-0020-3
Xiahan Sang , Andrew R. Lupini , Raymond R. Unocic , Miaofang Chi , Albina Y. Borisevich , Sergei V. Kalinin , Eirik Endeve , Richard K. Archibald , Stephen Jesse

Scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging at low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.

中文翻译:

STEM中的动态扫描控制:螺旋扫描

扫描透射电子显微镜(STEM)已成为以原子分辨率分析材料的最重要技术之一。但是,STEM成像固有的两个实际困难是:电子束造成的辐射损坏(可能会损坏或以其他方式修改标本)和慢扫描图像采集(这会限制在高时间分辨率下捕获动态变化的能力)。此外,部分由于扫描反激校正,典型的光栅扫描方法导致整个扫描区域的剂量分布不均匀。一种允许以均一的停留时间进行极快扫描的方法将能够在低电子剂量下成像,减轻辐射损伤,同时允许在保持原子分辨率的同时以更高的帧速率进行图像采集。实际的复杂性在于,以较高的速度光栅化STEM探针会导致明显的图像失真。非正方形扫描模式可解决这一难题,并可针对低剂量成像条件进行定制。在这里,我们开发了一种使用其他扫描模式成像的方法,并研究了其在极高扫描速度下的性能。本文介绍了螺旋扫描的一般分析,涉及以下螺旋扫描功能:阿基米德,费马和恒定线速度螺旋,已对其进行了STEM成像测试。螺旋扫描STEM图像的质量通常与常规光栅扫描的STEM图像相当,并且可以提高剂量均匀性。非正方形扫描模式可解决这一难题,并可针对低剂量成像条件进行定制。在这里,我们开发了一种使用其他扫描模式成像的方法,并研究了其在极高扫描速度下的性能。本文介绍了螺旋扫描的一般分析,涉及以下螺旋扫描功能:阿基米德,费马和恒定线速度螺旋,已对其进行了STEM成像测试。螺旋扫描STEM图像的质量通常与常规栅格扫描的STEM图像相当,并且可以提高剂量均匀性。非正方形扫描模式可解决这一难题,并可针对低剂量成像条件进行定制。在这里,我们开发了一种使用其他扫描模式成像的方法,并研究了其在极高扫描速度下的性能。本文介绍了螺旋扫描的一般分析,涉及以下螺旋扫描功能:阿基米德,费马和恒定线速度螺旋,已对其进行了STEM成像测试。螺旋扫描STEM图像的质量通常与常规栅格扫描的STEM图像相当,并且可以提高剂量均匀性。测试了STEM成像的Archimedean,Fermat和恒定线速度螺旋。螺旋扫描STEM图像的质量通常与常规栅格扫描的STEM图像相当,并且可以提高剂量均匀性。测试了STEM成像的Archimedean,Fermat和恒定线速度螺旋。螺旋扫描STEM图像的质量通常与常规栅格扫描的STEM图像相当,并且可以提高剂量均匀性。
更新日期:2016-06-13
down
wechat
bug