当前位置: X-MOL 学术Acta Metall. Sin. (Engl. Lett.) › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure and Electrochemical Hydrogen Storage Properties of as-Milled Mg–Ce–Ni–Al-Based Alloys
Acta Metallurgica Sinica-English Letters ( IF 2.9 ) Pub Date : 2020-01-06 , DOI: 10.1007/s40195-019-00990-4
Yanghuan Zhang , Zhenyang Li , Wei Zhang , Wengang Bu , Yan Qi , Shihai Guo

At room temperature, crystalline Mg-based alloys, including Mg2Ni, MgNi, REMg12 and La2Mg17, have been proved with weak electrochemical hydrogen storage performances. For improving their electrochemical property, the Mg is partially substituted by Ce in Mg–Ni-based alloys and the surface modification treatment is performed by mechanical coating Ni. Mechanical milling is utilized to synthesize the amorphous and nanocrystalline Mg1−xCexNi0.9Al0.1 (x = 0, 0.02, 0.04, 0.06, 0.08) + 50 wt%Ni hydrogen storage alloys. The effects made by Ce substitution and mechanical milling on the electrochemical hydrogen storage property and structure have been analyzed. It shows that the as-milled alloys electrochemically absorb and desorb hydrogen well at room temperature. The as-milled alloys, without any activation, can reach their maximal discharge capacities during first cycling. The maximal value of the 30-h-milled alloy depending on Ce content is 578.4 mAh/g, while that of the x = 0.08 alloy always grows when prolonging milling duration. The maximal discharge capacity augments from 337.4 to 521.2 mAh/g when milling duration grows from 5 to 30 h. The cycle stability grows with increasing Ce content and milling duration. Concretely, the S100 value augments from 55 to 82% for the alloy milled for 30 h with Ce content rising from 0 to 0.08 and from 66 to 82% when milling the x = 0.08 alloy mechanically from 5 to 30 h. The alloys’ electrochemical dynamics parameters were measured as well which have maximum values depending on Ce content and keep growing up with milling duration extending.

中文翻译:

刚轧制的Mg-Ce-Ni-Al基合金的结构和电化学储氢性能

在室温下,已证明包括Mg 2 Ni,MgNi,REMg 12和La 2 Mg 17在内的结晶Mg基合金的电化学储氢性能较弱。为了改善其电化学性能,Mg-Ni基合金中的Mg部分被Ce取代,并且通过机械涂覆Ni进行表面改性处理。机械研磨用于合成非晶态和纳米晶态的Mg 1- x Ce x Ni 0.9 Al 0.1x = 0、0.02、0.04、0.06、0.08)+ 50wt%的镍氢存储合金。分析了铈取代和机械研磨对电化学储氢性能和结构的影响。结果表明,铣削后的合金在室温下能很好地电化学吸收和解吸氢。研磨后的合金无需任何活化,就可以在第一次循环中达到其最大放电容量。30 h研磨合金的最大值取决于Ce含量为578.4 mAh / g,而x  = 0.08合金的最大值在延长研磨时间时始终会增长。当研磨时间从5小时增加到30小时时,最大放电容量从337.4 mAh / g增加到521.2 mAh / g。循环稳定性随Ce含量和研磨时间的增加而增加。具体来说,S 100当将x  = 0.08的合金从5h研磨到30 h时,将Ce的含量从0升高到0.08,将Ce的含量从0升高到0.08,将其值从55%增加到82%。还测量了合金的电化学动力学参数,这些参数的最大值取决于Ce的含量,并且随着研磨时间的延长而不断增长。
更新日期:2020-01-06
down
wechat
bug