当前位置: X-MOL 学术Appl. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reversed-Air Cooling Technology for High-Quality Drilling of CFRP
Applied Composite Materials ( IF 2.3 ) Pub Date : 2019-01-09 , DOI: 10.1007/s10443-018-9755-4
Fu-ji Wang , De Cheng , Bo-yu Zhang , Jian-bo Yan , Jian-wei Ma , Ze-gang Wang , Shuai-fei Wang

Drilling is commonly adopted in the manufacturing process of large CFRP structural components for meeting assembly requirements. However, undesirable burrs occur frequently due to the weak restrictive conditions at hole-exit and the excessively high cutting temperature, decreasing the components’ assembly performance. This study aims to propose a novel damage suppression method which can simultaneously enhance the hole-exit’s support and decrease the cutting temperature in drilling of CFRP. For the first time, the idea of non-contact support is proposed and realized by exerting an appropriate cooling airflow from the direction opposite to the tool’s feed at the hole-exit, which makes a step forward existing CFRP drilling technology in the aspects of conveniently and also efficiently suppressing the burrs. For determining the appropriate pressure of reversed airflow, in this study a method combining theoretical model and experimental method is employed, and upon which the optimal value and specific influences on hole-exit’s qualities are obtained. From the results, it is clear that excessively strong airflow will aggravate fiber-matrix interface cracks in planes of CFRP, while airflow with not enough strength cannot reach the expected effects on the burrs’ suppression. In the situation in this study, the optimal pressure is about 0.0083 MPa. The proposing of the reversed-air cooling technology is beneficial to the development of high-quality and high-efficiency drilling technology of CFRP.



中文翻译:

反向风冷技术,用于CFRP的高质量钻孔

大型CFRP结构部件的制造过程中通常采用钻孔以满足装配要求。但是,由于出孔时的限制条件较弱以及切削温度过高,经常会出现不希望的毛刺,从而降低了组件的组装性能。本研究旨在提出一种新颖的抑制损伤的方法,该方法可以同时增强孔洞的支撑并降低CFRP钻孔时的切削温度。首次提出并通过在孔出口处从与刀具进给相反的方向施加适当的冷却气流来实现非接触支撑的想法,这使现有的CFRP钻孔技术在便利性方面向前迈进了一步并有效抑制毛刺。为了确定合适的反向气流压力,本研究采用理论模型和实验方法相结合的方法,并在此方法上获得最佳值和对孔出口质量的特定影响。从结果可以明显看出,过强的气流会加剧CFRP平面中的纤维-基体界面裂纹,而强度不足的气流则无法达到预期的抑制毛刺的效果。在本研究的情况下,最佳压力约为0.0083 MPa。反向风冷技术的提出,有利于CFRP高质量,高效钻探技术的发展。得到最佳值和对出孔质量的特殊影响。从结果可以明显看出,过强的气流会加剧CFRP平面中的纤维-基体界面裂纹,而强度不足的气流则无法达到预期的抑制毛刺的效果。在本研究的情况下,最佳压力约为0.0083 MPa。反向风冷技术的提出,有利于CFRP高质量,高效钻探技术的发展。得到最佳值和对出孔质量的特殊影响。从结果可以明显看出,过强的气流会加剧CFRP平面中的纤维-基体界面裂纹,而强度不足的气流则无法达到预期的抑制毛刺的效果。在本研究的情况下,最佳压力约为0.0083 MPa。反向风冷技术的提出,有利于CFRP高质量,高效钻探技术的发展。最佳压力约为0.0083 MPa。反向风冷技术的提出,有利于CFRP高质量,高效钻探技术的发展。最佳压力约为0.0083 MPa。反向风冷技术的提出,有利于CFRP高质量,高效钻探技术的发展。

更新日期:2019-01-09
down
wechat
bug