当前位置: X-MOL 学术J. Indian Inst. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Porosity in Electrospun Nanofiber Sheets by Laser Engraving: A Strategy to Fabricate 3D Scaffolds for Bone Graft Applications
Journal of the Indian Institute of Science ( IF 1.8 ) Pub Date : 2019-08-21 , DOI: 10.1007/s41745-019-00115-x
Pallab Datta , Santanu Dhara

Nanofiber features in a scaffold provide favorable niche for cellular attachment, proliferation, and differentiation propelling their interest in tissue engineering. However, the inability of seeded cells to infiltrate inside 3D structures of electrospun nanofibers has remained a persistent bottleneck for their greater applicability. In the present work, an approach to address this problem is presented. Macro-pores are designed in common graphic software created by a laser-engraving machine on electrospun nanofiber sheets composed of a bioinspired material-N-methylene phosphonic chitosan for facilitating cellular infiltration into 3D scaffold. Effect of laser pulse energy and pulse per inch on pore morphology are investigated and FTIR spectrum is examined to preclude the degradation of material due to laser-engraving process. Furthermore, the micro-fabricated nanofiber sheets with multi-scalar porosity are rolled up to form a 3D scaffold as graft through biomimetic approach for bone-tissue engineering applications. Culture of MG-63 cells on rolled up nanofiber sheets containing laser-engraved macro-porous 3D scaffolds demonstrated no cytotoxicity induced by the scaffolds from MTT assay, while cellular migration into the sheets was evident from scanning electron microscopy. It is concluded that combined micro-fabrication-rolling approach may be simple, rapid way to design 3D bone grafts based on 2D electrospun nanofiber sheet of natural/semi-synthetic polymers for better osteoconductivity.

中文翻译:

通过激光雕刻设计电纺纳米纤维板的孔隙率:制造用于骨移植应用的 3D 支架的策略

支架中的纳米纤维特征为细胞附着、增殖和分化提供了有利的生态位,从而推动了他们对组织工程的兴趣。然而,种子细胞无法渗透到电纺纳米纤维的 3D 结构内部,这一直是其更大适用性的瓶颈。在目前的工作中,提出了一种解决此问题的方法。大孔由激光雕刻机在由仿生材料-N-亚甲基膦酸壳聚糖组成的电纺纳米纤维片上创建的通用图形软件中设计,用于促进细胞浸润到 3D 支架中。研究了激光脉冲能量和每英寸脉冲数对孔形态的影响,并检查了 FTIR 光谱,以防止由于激光雕刻过程引起的材料降解。此外,通过仿生方法将具有多尺度孔隙率的微加工纳米纤维片卷起形成 3D 支架作为移植物,用于骨组织工程应用。MG-63 细胞在含有激光雕刻的大孔 3D 支架的卷起纳米纤维片上的培养表明,MTT 测定中支架没有诱导细胞毒性,而扫描电子显微镜显示细胞迁移到片中。得出的结论是,结合微细加工-滚压方法可能是设计基于天然/半合成聚合物的 2D 电纺纳米纤维片的 3D 骨移植物的简单、快速的方法,以获得更好的骨传导性。MG-63 细胞在含有激光雕刻的大孔 3D 支架的卷起纳米纤维片上的培养表明,MTT 测定中支架没有诱导细胞毒性,而扫描电子显微镜显示细胞迁移到片中。得出的结论是,结合微细加工-滚压方法可能是设计基于天然/半合成聚合物的 2D 电纺纳米纤维片的 3D 骨移植物的简单、快速的方法,以获得更好的骨传导性。MG-63 细胞在含有激光雕刻的大孔 3D 支架的卷起纳米纤维片上的培养表明,MTT 测定中支架没有诱导细胞毒性,而扫描电子显微镜显示细胞迁移到片中。得出的结论是,结合微细加工-滚压方法可能是设计基于天然/半合成聚合物的 2D 电纺纳米纤维片的 3D 骨移植物的简单、快速的方法,以获得更好的骨传导性。
更新日期:2019-08-21
down
wechat
bug