Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tauberian Conditions of Slowly Decreasing Type for the Logarithmic Power Series Method
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences ( IF 0.9 ) Pub Date : 2018-09-26 , DOI: 10.1007/s40010-018-0544-0
Sefa Anıl Sezer , İbrahim Çanak

Let \((s_n)\) be a sequence of real numbers. We say that \((s_n)\) is summable to \(\xi \) by the logarithmic power series method if$$\lim _{x\rightarrow 1^-}f(x)=\xi, \quad {\text{where}}\quad f(x)=-\frac{1}{\log (1-x)}\sum_{n=0}^{\infty }\frac{s_n}{n+1}x^{n+1}. $$It is well known that if the limit \(\lim_{n \rightarrow \infty }s_n=\xi \) exists, then the limit$$\lim _{x \rightarrow 1^-} f(x)=\xi $$also exists. In this paper, we determine Tauberian conditions of slowly decreasing type to obtain ordinary convergence of \((s_n)\) from its summability by logarithmic power series method. As a consequence of our result, we give a short proof of an earlier Tauberian theorem due to Kwee (Can J Math 20:1324–1331, 1968).

中文翻译:

对数幂级数方法的慢减型陶伯条件

\((s_n)\)为实数序列。我们说,如果$$ \ lim _ {x \ rightarrow 1 ^-} f(x)= \ xi,\ quad {,通过对数幂级数方法,\((s_n)\)可累加为\(\ xi \)\ text {where}} \ quad f(x)=-\ frac {1} {\ log(1-x)} \ sum_ {n = 0} ^ {\ infty} \ frac {s_n} {n + 1} x ^ {n + 1}。$$众所周知,如果存在极限\(\ lim_ {n \ rightarrow \ infty s_n = \ xi \),则极限$$ \ lim _ {x \ rightarrow 1 ^-} f(x)= \ xi $$也存在。在本文中,我们确定缓慢减小类型的Tauberian条件以获得\((s_n)\)的普通收敛性通过对数幂级数法从其可积性 由于我们的结果,我们简短地证明了由于Kwee而产生的更早的陶伯定理(Can J Math 20:1324–1331,1968)。
更新日期:2018-09-26
down
wechat
bug