当前位置: X-MOL 学术Oxid. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Temperature Oxidation Behavior and Oxide Scale Structure of Yttrium-Modified Ni–16Mo–7Cr–4Fe Superalloy at 1273 K
Oxidation of Metals ( IF 2.2 ) Pub Date : 2019-04-24 , DOI: 10.1007/s11085-019-09914-0
Xiaoli Li , Shangming He , Jianping Liang , Xingtai Zhou

Oxidation of a Ni–16Mo–7Cr–4Fe superalloy containing various yttrium concentrations (0.00, 0.05, 0.12, 0.21 and 0.43 wt%) was undertaken in air at 1273 K for times up to 250 h. The nature and the structure of the oxide scales were investigated by synchrotron radiation techniques, TEM, SEM, XPS, etc. The oxidation kinetics of the alloys containing a low Cr content of 7 wt% sectionally obeyed the parabolic law. The oxidation rate of the alloy in the steady-state stage was reduced by about a factor of 30 by the micro-addition of 0.05 wt% yttrium. Yttrium microalloying greatly enhanced the selective oxidation of chromium and promoted the formation of a compact inner Cr2O3-enriched layer, which can inhibit the outward diffusion of oxidizable elements, especially the volatile-oxide-forming-element Mo, and remarkably improve the adhesion of the oxide scale to the matrix. The oxide scale of the alloy containing 0.05 wt% Y had a thin duplex structure: an outer NiO/NiFe2O4 layer and an inner Cr2O3/YCrO3/spinel oxide layer. In comparison, the oxide scale of the Y-free alloy and the alloys containing excess Y roughly had a thick triple-layer structure: an outmost NiO/NiFe2O4 layer, an intermediate Mo0.84Ni0.16/Cr2O3/spinel oxide layer and an inner Cr2O3/spinel oxide layer. Increasing the concentration of Y in solid solution and reducing the amount of Y-bearing compound are helpful to optimize the effect of Y on improving the oxidation resistance of the alloy.

中文翻译:

钇改性 Ni–16Mo–7Cr–4Fe 高温合金在 1273 K 的高温氧化行为和氧化皮结构

含有各种钇浓度(0.00、0.05、0.12、0.21 和 0.43 wt%)的 Ni-16Mo-7Cr-4Fe 高温合金在 1273 K 的空气中进行氧化,时间长达 250 小时。通过同步辐射技术、TEM、SEM、XPS等研究了氧化皮的性质和结构。含7wt%低Cr合金的氧化动力学截面服从抛物线规律。通过微量添加 0.05 wt% 钇,合金在稳态阶段的氧化速率降低了约 30 倍。钇微合金化大大增强了铬的选择性氧化,促进了致密的内层 Cr2O3 富集层的形成,可以抑制可氧化元素,尤其是挥发性氧化物形成元素 Mo 的向外扩散,显着提高氧化皮对基体的附着力。含有 0.05 wt% Y 的合金的氧化皮具有薄的双相结构:外部 NiO/NiFe2O4 层和内部 Cr2O3/YCrO3/尖晶石氧化物层。相比之下,无 Y 合金和含有过量 Y 的合金的氧化皮大致具有厚三层结构:最外层的 NiO/NiFe2O4 层、中间的 Mo0.84Ni0.16/Cr2O3/尖晶石氧化层和内部Cr2O3/尖晶石氧化层。提高Y在固溶体中的浓度,减少含Y化合物的用量,有利于优化Y对提高合金抗氧化性的作用。无 Y 合金和含有过量 Y 的合金的氧化皮大致具有厚的三层结构:最外层的 NiO/NiFe2O4 层、中间的 Mo0.84Ni0.16/Cr2O3/尖晶石氧化层和内部的 Cr2O3/尖晶石氧化层。提高Y在固溶体中的浓度,减少含Y化合物的用量,有利于优化Y对提高合金抗氧化性的作用。无 Y 合金和含有过量 Y 的合金的氧化皮大致具有厚的三层结构:最外层的 NiO/NiFe2O4 层、中间的 Mo0.84Ni0.16/Cr2O3/尖晶石氧化层和内部的 Cr2O3/尖晶石氧化层。提高Y在固溶体中的浓度,减少含Y化合物的用量,有利于优化Y对提高合金抗氧化性的作用。
更新日期:2019-04-24
down
wechat
bug