当前位置: X-MOL 学术Soft Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase Changing Materials-Based Variable-Stiffness Tensegrity Structures.
Soft Robotics ( IF 7.9 ) Pub Date : 2020-06-02 , DOI: 10.1089/soro.2019.0091
Davide Zappetti 1 , Seung Hee Jeong 1 , Jun Shintake 1, 2 , Dario Floreano 1
Affiliation  

Soft robots leverage deformable bodies to achieve different types of locomotion, improve transportability, and safely navigate cluttered environments. In this context, variable-stiffness structures provide soft robots with additional properties, such as the ability to increase forces transmitted to the environment, to lock into different body configurations, and to reduce the number of actuators required for morphological change. Tensegrity structures have been recently proposed as a biologically inspired design principle for soft robots. However, the few examples of tensegrity structures with variable stiffness displayed relatively small stiffness change (i.e., by a factor of 3) or resorted to multiple and bulky actuators. In this article, we describe a novel design approach to variable-stiffness tensegrity structures (VSTSs) that relies on the use of variable-stiffness cables (VSCs). As an example, we describe the design and implementation of a three-strut tensegrity structure with VSCs made of low melting point alloys. The resulting VSTS displays unprecedented stiffness changes by a factor of 28 in compression and 13 in bending. We show the capabilities of the proposed VSTS in three validation scenarios with different tensegrity architectures: (1) a beam with tunable load-bearing capability, (2) a structure that can self-deploy and lock its shape in both deployed and undeployed states, and (3) a joint with underactuated shape deformations.

中文翻译:

基于相变材料的变刚度张拉整体结构。

软机器人利用可变形的身体来实现不同类型的运动,提高可运输性,并在杂乱的环境中安全导航。在这种情况下,可变刚度结构为软机器人提供了额外的特性,例如增加传递到环境的力、锁定不同的身体配置以及减少形态变化所需的执行器数量的能力。张拉整体结构最近被提出作为软机器人的生物启发设计原则。然而,具有可变刚度的张拉整体结构的少数例子显示出相对较小的刚度变化(即,3 倍)或采用了多个笨重的执行器。在本文中,我们描述了一种依赖于使用可变刚度电缆 (VSC) 的可变刚度张拉整体结构 (VSTS) 的新颖设计方法。例如,我们描述了三支柱张拉整体结构的设计和实现,其中 VSC 由低熔点合金制成。由此产生的 VSTS 显示出前所未有的刚度变化,压缩系数为 28 倍,弯曲系数为 13 倍。我们在具有不同张拉整体架构的三个验证场景中展示了所提出的 VSTS 的能力:(1)具有可调承载能力的梁,(2)可以在部署和未部署状态下自行部署和锁定其形状的结构, (3) 具有欠驱动形状变形的接头。我们描述了三支柱张拉整体结构的设计和实现,其中 VSC 由低熔点合金制成。由此产生的 VSTS 显示出前所未有的刚度变化,压缩系数为 28 倍,弯曲系数为 13 倍。我们在具有不同张拉整体架构的三个验证场景中展示了所提出的 VSTS 的能力:(1)具有可调承载能力的梁,(2)可以在部署和未部署状态下自行部署和锁定其形状的结构, (3) 具有欠驱动形状变形的接头。我们描述了三支柱张拉整体结构的设计和实现,其中 VSC 由低熔点合金制成。由此产生的 VSTS 显示出前所未有的刚度变化,压缩系数为 28 倍,弯曲系数为 13 倍。我们在具有不同张拉整体架构的三个验证场景中展示了所提出的 VSTS 的能力:(1)具有可调承载能力的梁,(2)可以在部署和未部署状态下自行部署和锁定其形状的结构, (3) 具有欠驱动形状变形的接头。
更新日期:2020-06-02
down
wechat
bug