当前位置: X-MOL 学术CSI Trans. ICT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging device: FINFET, tunnel FET and their applications
CSI Transactions on ICT Pub Date : 2019-05-27 , DOI: 10.1007/s40012-019-00240-z
Brinda Bhowmick

In order to overcome the limitations of MOSFET, researchers have proposed various alternative techniques like material engineering, gate engineering, work function engineering, structural engineering, spacer engineering, gate oxide engineering and so on. Among these researchers have looked out for an alternative device which can replace the MOSFETs in future. Fin Field-effect Transistor (FinFET) is very promising device and it can replace the traditional MOSFET for low power applications. FinFET can control the channel from all the three side of the gate and provides outstanding performance against SCEs and very high on to off current ratio. FET-based biosensors are gaining interests due to their compact sizes, prevalent manufacturing processes, label-free detection, and established physics-based explanations. The most common geometrical modifications in FETs employed for biomolecule detection are based on gating effect and dielectric modulation. In the former, the gate material of a FET is replaced by a layer of suitable receptors over the gate dielectric material, which upon conjugation of the charged biomolecules reflects a change in the energy bands in the channel, and hence, the currents. In the latter, a portion of the gate dielectric material is etched out to form a nanogap; when biomolecules are immobilized in the nanogap, the dielectric constant of the gap changes, and a change is reflected in the drain current. The gating effect is best suited for charged biomolecules, whereas dielectric modulation aids in sensing both charged and neutral biomolecules. Im et al. proposed a dielectric modulated FET-based biosensor after the ion sensitive FETs proposed in 1970s. Sarkar and Banerjee presented a nanowire TFET in demonstrating the gating effect for positively charged biomolecules. Further, tunneling in photodiodes under zero illumination is involved in developing a portable circuit generating random numbers. The objective of the design is to highlight the importance of tunneling in a simple device such as a photodiode, and show qualitatively how leakage currents arising out of tunneling can be useful for certain purposes.

中文翻译:

新兴设备:FINFET,隧道FET及其应用

为了克服MOSFET的局限性,研究人员提出了各种替代技术,例如材料工程,栅极工程,功函数工程,结构工程,间隔物工程,栅极氧化物工程等。在这些研究人员中,他们一直在寻找一种可以在将来替代MOSFET的替代器件。鳍式场效应晶体管(FinFET)是非常有前途的器件,它可以代替低功率应用中的传统MOSFET。FinFET可以从栅极的所有三个侧面控制通道,并具有出色的抗SCE性能和非常高的通断电流比。基于FET的生物传感器因其紧凑的尺寸,流行的制造工艺,无标签检测以及基于物理学的解释而受到关注。用于生物分子检测的FET中最常见的几何修改基于选通效应和介电调制。在前者中,FET的栅极材料被栅极介电材料上的一层合适的受体所取代,该层在带电生物分子共轭时反映了通道中能带的变化,从而改变了电流。在后者中,一部分栅介电材料被蚀刻掉以形成纳米间隙。当将生物分子固定在纳米间隙中时,间隙的介电常数发生变化,并且该变化反映在漏极电流中。门控效应最适合带电的生物分子,而介电调制则有助于感应带电和中性的生物分子。我等。在1970年代提出离子敏感FET之后,他提出了一种基于介电调制FET的生物传感器。Sarkar和Banerjee提出了一种纳米线TFET,以证明带正电的生物分子的门控作用。此外,在零照明下在光电二极管中的隧穿涉及开发产生随机数的便携式电路。该设计的目的是强调在诸如光电二极管之类的简单器件中隧穿的重要性,并定性地展示由隧穿产生的泄漏电流如何可用于某些目的。
更新日期:2019-05-27
down
wechat
bug