当前位置: X-MOL 学术Korea Aust. Rheol. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stability of flows with the BMP model in the yield stress limit
Korea-Australia Rheology Journal ( IF 2.2 ) Pub Date : 2019-11-25 , DOI: 10.1007/s13367-019-0022-5
Ian Frigaard , Alondra Renteria

Common features of complex fluids include yield stress, thixotropy and elasticity. A comprehensive constitutive model attempts to effectively predict flow responses dominated by such characteristics. Nevertheless, when constructing a constitutive model that deals with yield stress fluids one must try to preserve the fundamental characteristics of a yield stress. This paper explores the static and energy stability of a classic viscoplastic model when elasticity or thixotropy are introduced. We exemplify this analysis using the Bautista-Manero-Puig (BMP) model in the yield stress limit. This model has the advantages of a small number of parameters, a physically intuitive kinetic equation, and it has been widely used to represent fluids with time-dependent rheology. We analyze stability of the BMP model for different limiting cases. Vis-coplastic flows (VP), where we remove the elasticity and thixotropy behaviour, are shown to respond qualitatively in an analogous way to a simple yield stress fluid, e.g. Bingham, Casson. Thixo-visco-plastic flows (TVP), identified by having an elastic time scale much faster than the thixotropic and viscous timescales, preserve the notion of static and energy stability but with bounds now dependent on the stress and no longer with finite time decay. Finally, elasto-visco-plastic flows (EVP), where the thixotropic evolution is faster than the elastic, have a static stability limit perturbed linearly by the Weissenberg number. Numerically solved examples of each of flow regime are given for stopping and starting flow, based on the plane Poi-seuille flow.

中文翻译:

BMP模型在屈服应力极限下的流动稳定性

复杂流体的共同特征包括屈服应力,触变性和弹性。一个全面的本构模型试图有效地预测以这种特性为主的流动响应。但是,在构建处理屈服应力流体的本构模型时,必须设法保留屈服应力的基本特征。当引入弹性或触变性时,本文探讨了经典粘塑性模型的静态和能量稳定性。我们在屈服应力极限中使用Bautista-Manero-Puig(BMP)模型来举例说明此分析。该模型的优点是参数数量少,物理上直观的动力学方程式,已被广泛用于表示具有随时间变化的流变性的流体。我们分析了不同极限情况下BMP模型的稳定性。粘塑性流(VP)消除了弹性和触变性,对简单的屈服应力流体(如Bingham,Casson)的定性响应是定性的。触变-粘塑性流动(TVP)具有弹性时间尺度,远比触变和粘性时间尺度快,它保留了静态和能量稳定性的概念,但现在取决于应力范围,而不再具有有限的时间衰减。最后,触变演化快于弹性的弹黏塑性流动(EVP)具有静态稳定性极限,该极限受Weissenberg数线性干扰。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。示出了对简单屈服应力流体,例如Bingham,Casson的定性响应。触变-粘塑性流动(TVP)具有弹性时间尺度,远比触变和粘性时间尺度快,它保留了静态和能量稳定性的概念,但现在的范围取决于应力,而不再具有有限的时间衰减。最后,触变演化快于弹性的弹黏塑性流动(EVP)具有静态稳定性极限,该极限受Weissenberg数线性干扰。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。示出了对简单屈服应力流体,例如Bingham,Casson的定性响应。触变-粘塑性流动(TVP)具有弹性时间尺度,远比触变和粘性时间尺度快,它保留了静态和能量稳定性的概念,但现在的范围取决于应力,而不再具有有限的时间衰减。最后,触变演化快于弹性的弹黏塑性流动(EVP)具有静态稳定性极限,该极限受Weissenberg数线性干扰。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。通过具有比触变和粘性时标快得多的弹性时标来确定,保留了静态和能量稳定性的概念,但现在的范围取决于应力,而不再具有有限的时间衰减。最后,触变演化快于弹性的弹黏塑性流动(EVP)具有静态稳定性极限,该极限受Weissenberg数线性干扰。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。通过具有比触变和粘性时标快得多的弹性时标来确定,保留了静态和能量稳定性的概念,但现在的范围取决于应力,而不再具有有限的时间衰减。最后,触变演化快于弹性的弹黏塑性流动(EVP)具有静态稳定性极限,该极限受Weissenberg数线性干扰。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。的静态稳定性极限受魏森贝格数线性影响。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。的静态稳定性极限受魏森贝格数线性影响。基于平面Poi-seuille流动,给出了每种流动状态的数值求解示例,用于停止和开始流动。
更新日期:2019-11-25
down
wechat
bug