当前位置: X-MOL 学术Appl. Intell. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transfer learning based 3D fuzzy multivariable control for an RTP system
Applied Intelligence ( IF 5.3 ) Pub Date : 2019-10-09 , DOI: 10.1007/s10489-019-01557-7
Xian-Xia Zhang , Han-Xiong Li , Chong Cheng , Shiwei Ma

Abstract

Rapid thermal processing (RTP) is an important process in the fabrication of semiconductor devices. It is difficult to achieve temperature uniformity control of the wafer in RTP since the system is a highly nonlinear process with strong spatial distribution. In this study, a transfer learning-based three-dimensional (3D) fuzzy multivariable control scheme is proposed for the temperature uniformity control of an RTP system. In difference to the traditional expert-knowledge based design, a two-level framework of transfer learning methodology is constructed to design the 3D fuzzy multivariable controller (3D FMC) with the help of a multi-output support vector regression (M-SVR). The 3D FMC defines a qualitative spatial fuzzy structure that will be transferred to the M-SVR. On the other hand, the structure parameters of the M-SVR will be learned from data and transferred to design quantitative parameters of the 3D FMC. Under the framework of transfer learning, the control laws (e.g. human control experience) hidden in spatio-temporal data can be extracted and formulated back into multi-output 3D fuzzy rules. The proposed method provides an effective integration of the spatial fuzzy inference and the transfer learning for 3D FLC design. The newly developed method is applied to the temperature uniformity control of a rapid thermal chemical vapor deposition (RTCVD) system at the set temperature 1000K, and the maximum non-uniformity along the wafer radius is close to 1K.



中文翻译:

RTP系统基于传递学习的3D模糊多变量控制

摘要

快速热处理(RTP)是半导体器件制造中的重要过程。由于该系统是高度非线性的过程,具有很强的空间分布,因此很难在RTP中实现晶片的温度均匀性控制。在这项研究中,提出了一种基于传递学习的三维(3D)模糊多变量控制方案,用于RTP系统的温度均匀性控制。与传统的基于专家知识的设计不同,构建了两级迁移学习方法框架,以借助多输出支持向量回归(M-SVR)设计3D模糊多变量控制器(3D FMC)。3D FMC定义了定性的空间模糊结构,该结构将被传输到M-SVR。另一方面,M-SVR的结构参数将从数据中学习,并转换为3D FMC的设计定量参数。在迁移学习的框架下,可以提取时空数据中隐藏的控制规律(例如人的控制经验),并将其重新公式化为多输出3D模糊规则。所提出的方法为3D FLC设计提供了空间模糊推理和传递学习的有效集成。新开发的方法应用于设定温度1000K的快速热化学气相沉积(RTCVD)系统的温度均匀性控制,并且沿晶圆半径的最大不均匀度接近1K。可以提取隐藏在时空数据中的人员控制经验,并将其重新公式化为多输出3D模糊规则。所提出的方法为3D FLC设计提供了空间模糊推理和传递学习的有效集成。新开发的方法应用于设定温度1000K的快速热化学气相沉积(RTCVD)系统的温度均匀性控制,并且沿晶圆半径的最大不均匀度接近1K。可以提取隐藏在时空数据中的人员控制经验,并将其重新公式化为多输出3D模糊规则。所提出的方法为3D FLC设计提供了空间模糊推理和传递学习的有效集成。新开发的方法应用于设定温度1000K的快速热化学气相沉积(RTCVD)系统的温度均匀性控制,并且沿晶圆半径的最大不均匀度接近1K。

更新日期:2020-02-19
down
wechat
bug