当前位置: X-MOL 学术Geoenviron. Disasters › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The relationship among the premonitory factors of landslide dam failure caused by seepage: an experimental study
Geoenvironmental Disasters ( IF 3.8 ) Pub Date : 2019-11-29 , DOI: 10.1186/s40677-019-0135-7
Prakash Dhungana , Fawu Wang

A landslide dam always has the potential for catastrophic failure with high risk for life, cost and, property damage at the downstream site. The formation of a landslide dam is a natural process; thus, minimizing the risk due to its failure is important. Landslide dam failure can be categorized into three types: seepage failure, overtopping and slope failure. As described by other researchers, the established premonitory factors of landslide dam failure are hydraulic gradients, seepage and turbidity as well as vertical displacement and inflow into the reservoir. This study only considered seepage failure and used flume experiments to understand it. Three groups of samples which represented fine, medium and coarse particle sizes, respectively, were prepared by Silica sand S4, S5, S6 and S8 of different proportion. These samples were used to conduct the flume experiments of failure and not failure case. For failure cases, it was found that GI samples have a higher hydraulic gradient and that the seepage water takes time to exit the dam body—however, the seepage water has more TSS. GII samples also had a higher hydraulic gradient, while the flow of seepage water was faster than that of the fine sample with a low TSS. For GIII samples, the hydraulic gradient was very low in comparison with the GI and GII samples. The GIII samples had TSS values that were quite a bit higher than those of the GII samples and lower than those of the GI samples. Experiments on GI samples failed at each attempt; however, the GI samples with kaolinite did not fail and had a higher TSS value. For a GII sample of a non-failed case, the hydraulic gradient was lower than for GI samples and the seepage water flow was faster but the vertical displacement was constant and TSS was on a decreasing order. For a GIII sample, the hydraulic gradient became constant after reaching its initial peak value and TSS was on a decreasing order with an initially increasing vertical displacement that would become constant. Seepage failure of a landslide dam can be predicted by understanding the nature of its premonitory factors. These factors behave differently in different particle size samples. The TSS trend line may be the initial factor for checking the stability of a dam crest. A landslide dam with an increasing TSS order will fail and a decreasing order may not fail. Based on all experiments, it can be concluded that the hydraulic gradient has three stages: 1) it starts to increase and reaches a peak value; 2) it starts to decrease from the peak value and reaches a minimum; and 3) it starts to increase again where the seepage water begins to come out and the vertical displacement starts to increase. Dam failures always occur when seepage water comes out with an increasing TSS and an increasing vertical displacement. Repeated experiments on samples having more fine particles show that if a landslide dam is formed by fine particles, then there would be a high chance of its failure. In case of a constant hydraulic gradient, the landslide dam would be stable whenever there is an increasing vertical displacement and presence of TSS. Similarly, in case of a constant vertical displacement and a decreasing TSS, a landslide dam would be stable.

中文翻译:

渗流引起的滑坡大坝破坏预警因素之间的关系:实验研究

滑坡大坝总是有可能发生灾难性破坏,对下游站点造成生命,成本和财产损失的高风险。滑坡坝的形成是自然过程。因此,将因故障导致的风险降到最低非常重要。滑坡大坝的破坏可分为三类:渗流破坏,过顶破坏和边坡破坏。正如其他研究人员所描述的那样,已建立的滑坡大坝破坏的监测因素是水力梯度,渗流和浊度以及垂直位移和流入水库的流量。这项研究仅考虑了渗流破坏,并通过水槽实验对其进行了了解。用不同比例的硅砂S4,S5,S6和S8制备了分别代表细,中和粗粒度的三组样品。这些样品用于进行水槽实验,而不是失败案例。对于破坏案例,发现GI样品具有较高的水力梯度,并且渗漏水要花一些时间才能离开坝体-但是,渗漏水具有更多的TSS。GII样品也具有较高的水力梯度,而渗流的水流比TSS低的细样品的水流要快。对于GIII样品,与GI和GII样品相比,水力梯度非常低。GIII样品的TSS值比GII样品的TSS值高得多,但比GI样品的TSS值低。GI样品的实验每次尝试均失败。但是,含有高岭石的GI样品没有失败,并且具有更高的TSS值。对于未失败案例的GII样本,水力梯度低于GI样品,渗流速度更快,但垂直位移恒定,TSS呈递减顺序。对于GIII样品,水力梯度在达到其初始峰值后变得恒定,并且TSS呈递减顺序,而初始位移垂直增大,该位移将变为恒定。可以通过了解滑坡坝的监测因素的性质来预测其渗流破坏。这些因素在不同粒径的样品中表现不同。TSS趋势线可能是检查坝顶稳定性的初始因素。TSS阶数增大的滑坡坝将失效,而阶数减小的滑坡坝将不会失效。根据所有实验,可以得出结论,水力梯度具有三个阶段:1)开始增加并达到峰值;2)从峰值开始减小并达到最小值;3)在渗水开始出现并且垂直位移开始增加的地方又开始增加。当TSS增大和垂直位移增大时,渗水涌出总是发生大坝破坏。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么其崩塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。2)从峰值开始减小并达到最小值;3)在渗水开始出现并且垂直位移开始增加的地方又开始增加。当TSS增大和垂直位移增大时,渗水涌出总是发生大坝破坏。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么其崩塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。2)从峰值开始减小并达到最小值;3)在渗水开始出现并且垂直位移开始增加的地方又开始增加。当TSS增大和垂直位移增大时,渗水涌出总是发生大坝破坏。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么其崩塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。3)在渗水开始出现并且垂直位移开始增加的地方又开始增加。当TSS增大且垂直位移增大时,渗水涌出总是发生大坝破坏。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么滑塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。3)在渗水开始出现并且垂直位移开始增加的地方又开始增加。当TSS增大且垂直位移增大时,渗水涌出总是发生大坝破坏。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么滑塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么其崩塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。对具有更多细颗粒的样品进行的重复实验表明,如果由细颗粒形成滑坡坝,那么滑塌的可能性就很大。在水力梯度恒定的情况下,每当垂直位移增加且存在TSS时,滑坡坝将保持稳定。同样,在垂直位移恒定且TSS减小的情况下,滑坡坝将是稳定的。
更新日期:2019-11-29
down
wechat
bug